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About the talk...

e ® Several caveats
e [ tried to put all interesting studies that I found or heard of...

e Some of the studies present are not up-to-date
e Several results will be quantitative, I wanted only give the general idea
e Overview on physics = focus on IACT signatures

e Most materials is taken from external
authors

e I try to give credits to them
e Not all involved people were mentioned

e I will add a basic bibliography
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Motivations and expectations

O Pursuing exotic with IACTs (and CTA)
It is not impossible

It can contribute to real fundamental
discoveries

It is much fun!

O Expectations largely depends on scenarios
and novel scenarios may pop-up anytime

O It is where theoreticians must meet
experimentalists

Thoreticians are more updated on recent ey

Deeper knowledge of theoretical aspects ho logicIomicl oG
: : below the street light...

Experimentalist needed to adapt

experiment/analysis/data interpretation

Theoreticians may not be able to
understand CTA easily as us
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The exotic tour
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O Tau-neutrino searches O Magnetic monopoles
O Axions searches O Gravitational waves
0 Cosmological parameters O Various CR searches
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.- Tau-Ngutrino sgarchgs
© ThanKs to: Markus Gaug, Oscar Blanch

: Proposal for thg obsgrvation of tau-negutrinos with
~*  MAGIC-phasel (2006)
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The importance of being tau
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r — 7 3, . 37" = 61 ~ 1.23%
r— 1 wt, 2r— ., wt ~ 10%
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Fargion, 2000

*Taus leads to many observable showers

*Tau is a m.i.p.
*Tau has a large range
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Principles of observation for IACT

Neutrinos = [Matter =» Leptons] = [Air = E.M. shower]

R=-2R_*cos@®)

earth

Horizontal observation

Downward observation

Main advantage: background should have clear signatures
or even background free
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An exercise for MAGIC 1 (Diffuse and GRBs)

SEVERAL CAVEATS: A) Diffuse neutrinos fluxes
|) analytic calculation of the effective % L AELZ0-10 6 AGev em—sr—s) |
area (no MC simulation) B 10F T
2) no background simulation ém?]f); fffff e A
3) took AMANDA upper limits (2005,  <i5eE 1ol
best case scenario) :;}g_;; 3 |
4) Observation at the sea (exactly at g}ggf
92 deg zenith) S 0 DRI T
% 2 4 6 8 10 12 - r|oggéev)1
> (A) Gaug, 2006
RESULTS: B) Average GRB
|) Sensitivity [I00TeV , | EeV] #(E.)=0.36min(1 . /E, ). (GeV om™
2) Mountain would be better! 3 19E o —
3) Diffuse #l:is very low because of S0k T
the limited FOV (3evts/year/sr) 0 e
Diffuse #2: No competition with I = : e T e T
(icecube, biakal, auger, antares) 7R
4) GRB #1:7 events for entire GRB glgii
GRB #2: Possible delayed SE, o | L
observation (<lday from burst) g 2 ‘ 6 8 10 12 I

(B) Gaug, 2006 E. [log(GeV) ]
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Other pomt -like neutrino sources

; 1.1, 2
QE2[GeVsrs em”]

~ ~ ~ ~

S S S S

~
S

~
S

|
“

|
&)

|
N

[

©

~
S

T

Atmospher;

TTT

@ mBL1 @ HBLI

.. ® AMANDA-II, unfolded

4'» hffuse limit (2000)
L B dlffuse limit (00-03)
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Need VHE neutrinos

e Microquasars and LBL are possible
targets but hardly En > 100 TeV

High-peaked blazars (HBLS)

e Good candidates En>1017 eV
e (e.g. 1ES 1959+650, 1ES 2344+514)

Milagro sources!
Galaxy clusters

...0r a supernova events!

In principle, the galactic center (and the
sun) could have neutrino signatures

But typical WIMP mass is below few TeV
(excluded high-mass DM models)
- too low
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CTA {if the artist was a fortune-teller}

Extended observation mode (30xMAGIC)
Higher-eff.area

Lower energy threshold -> higher fluxes
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* Diffuse emission: simple scaling from MAGICI: ~10 evts/year
* Point-like source: depends on models.
{naive! : observe when high clouds are present!}
—->MC SIMULATIONS ARE NEEDED (AND COMPLICATE)
—>POSSIBLY DIFFERENT TRIGGER CONFIGURATION
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Other experiments
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Still preliminary to make estimation on CTA sensitivity
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~ Thanks to: M.{4. Sanchegz-Conde (masc®@iac.¢s)

Sanchez-Conde et al., 2009, Physical Review D, vol. 79, Issue 12, id. 123511
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Axions-photons conversion

Axion good
“cold” DM

Ny - candidate for

AGN ¥ - Earth 3
-~y a ¥ axion masses le-3

— |e-6 eV

B Biomr

source

Photon-axion

Py = in? 1+ . Eopit = : >
= T (Bon B 5 ( i ) with t=—<p conversions in

M
l 21 magnetic field (no
M,;: coupling constant inverse direct detection)
15-B (9 /10" GeV)
B,: magnetic field (G)

Sy Size region (pc)

G S

* For an efficient conversion: =1

11

15-B; - s, ) Astrophysical sources with Bges, = 0.01 will be valid.
=
My, |7 In1GMFs, B=10°
My1 = 0.114 GeV (CAST limit) | Mixing possible for cosmological sources (s, = 10°)
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Axions and VHE gamma-rays

We want E_crit at the GeV scale

mze Mu
Eeit(GeV) = (F)LZ—BG

* Mixing at the source (AGN, B~QG) 5
Gamma-rays converts into axions for axion mass < 106 eV {m_a< 10 eV}

* Mixing in the IGMF (B~nG)
Gamma-rays converts into axions for axion mass =~ 10-12eV

* EBL influence
When photons convert to axions are not EBL-absorbed = gamma-ray boost

Y Y TETTTYYT

mixing

Primack
Kneiske

1
N
~J
[(e)

Three regions at GeV-TeV (modulo
the definition of E_crit):

100:—

intergalactic

* E<30 GeV: gamma-ray attenuation
due axion conversion at source
*30 GeV < E <200 GeV: gamma-ray
attenuation due axion conversion in
IGMF
* E> 200 GeV: gamma-ray boost due to oo oo
fact that axions are not EBL-absorbed T

01 1.0 "E).(OGeV)
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Spectral-features

3C279, Kneiske+04 bestfit, B=0.1nG
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e Axion-conversion milds the effect of the EBL absorption

e To disentangle axion / photons mixing
e Need many blazars at different large redshifts (>0.1 in most cases)
e Need better blazar intrinsic models and EBL models (and/or blazar

flares)
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Strategy and prospects for CTA

rirmock — IACTs observations
Kneiske Look for systematic intensity
100 | enhancements at energies where
i the EBL is important.
'§ Distant (z > 0.2) sources at the
é highest possible energies (>1
g °F TeV), to push EBL models to the
< extreme.
Source and EBL model
= S - 3 dependent, but very important
: . . : 1 ] enhancement expected in some
o1 1o [ o0 M—— cases.
E (GeV)
Fermi/LAT Fermi/LAT and/or IACT
Look for intensity drops in the residuals - Look for intensity drops in the residuals.
(“best-model”-data). | Only depends on the IGMF and axion properties (mass
Source model dependent. and coupling constant).
Powerful, relatively near AGNs. Independent of the sources -> CLEAR signature!

| * Higher sensitivity =» more (& fainter) blazars
i ™ Lower energy threshold =» more (& farther) blazars
" * CTA also probes galaxy clusters

Together they will produce better EBL constraining and Blazar models

=>» stronger Axion-like constraints
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| Find
DARK ENERGY

e Repulsive

" Cosmological parameters

Thanks to: Oscar Blanch (blanch@ifae.es), Phd Thesis 2004
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IACT contribution
(B, z) = /U '(;INI / (11 — / (€,2') - o[2zFe(1 + N')“)

1|"

dl ‘ 1/(1+2)

C- —
dz ]7[()[9711(l + 2)3 + Ql.(l + 2)2 + Q)\_l"'fz

e Optical depth depends on
cosmological parameters 3 [T

e Blazar cutoffs can put constraints o B ans
o © Independent from other estimations. 2 |

e © AGNs can provide high-redshifts
exploration 1K

e ® rely on EBL models e r\
e 0O.Blanch, M.Martinez o
(2004)calculated before MAGIC I was cfllers

operating. Need several updates... N, ey,

e CTA: © lower threshold, higher o
sensitivity © ! 2 3

19
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Magnztie Flonopolegs

© Prom: G.C.dpengdler’s Piploma thesis, 2009
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Introduction

e Original idea from Dirac ('30s):
 If one adds magnetic monopoles r, and magnetic
current j,, Maxwell’s equation become fully A
symmetrical not only in vacuum ; f
e MM arisen in GUT theories ('74 t'Hooft & Polyakov)

e The MM mass in general O(GUT)~1016-1017 GeV
(thus measure MM =» measure GUT)

e Searches: MM produce huge Cherenkov light in matter

e MACRO: wide-range experiment

e AMANDA: Cherenkov emission from
MM is ~8000 stronger than from

g 2 a7 Ice 2 AT
electromagnetic shower. d”I\ d* N

~ 8000 :
dxd\ Monopole dzd) Electric
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What about IACTs

e MM are charged - initiates E.M.
Cherenkov shower
2N " 2N

~ 4700 :
dCIJ d)\ Monopole dCI}d)\ Electric

e Very complicated MC simulation

e IACT can probe my,>10'> eV and
large &)
e But...

e very clear signatures in the camera:
feW eXtremely bright pixels e Irducbon eapen ments lcombned imit)

e Analysis on all data taken, no need to
allocate time :

Parker Lt

Flux bt in 1
. §
>
z
-
»
3 .
-

CTA

e Maybe a factor 10 better achieved
due to larger effective area

e Larger region of the sky surveyed .
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h Gravitational Waves

- Thanks to: {ntonio Stamerra (Proposal of follow-up
- of GW for MAGIC), internal note

23



Current status

e Gravitational waves in Einstein’s theory

e Merging of compact binary systems,
Supernova or neutron-star core-collapse,
Star-quakes, Pulsar glitches, ...

e Duration <1sec
e Rate???

e GW-network of experiments (5 in total):
e Virgo, Ligo (3x), Geo 600

e Kilometer-scale Michelson interferometry to
measure DL/L

e Measure from 1022 -1016 Hz

» When operated together 2deg angular
resolution

e Trigger can come after 10 minutes

 Significant improvement in few years (good
expectations for future)




When CTA will operate

LISA pathfinder (2013) and LISA space
interferometry (2020)

Upgrades on Ligo and Virgo foresee 1000x
monitored Universe volume - great
expectations

Maybe we will have some events

CTA scope:
Find the gamma-ray counterparts
Even ULs would be important

CTA to do list:
Plan for triggers accepted
Fast repositioning needed (a-la GRBs)

No need of particular activity (nor th. nor exp.)
Unknown predictions but possible fundamental discoveries

25
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Electron

- Cosmie rags
| circns Dosiirons,
- protons, antiprotons, ¢te

- lsgss grotie bat quite fundamental too...
(herg mang econtributions and alrgady published results)
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CR signature are bizzarre

o o o - " [ Yy MEAT (2001) ;MLSS[ZDSQ]. A
~ ”mmé;m g ) ii . EIL',,
—~ = o & 2= ‘_'. 2 ,';:z iy
0 10™ £ ”){/-" {E%E;W ) "u\\“‘i Z8
+ E 10 s/ I % ~&] 173
S s | s
T ~ oo,
> P L .f'/.""
L AMEAT 94+95 e 4 = »?/'{E
o 1 0? 05
10 10 E (el 1 1 £ (CeV)
o Recent multiple anomalies in CRs o Explanations
fluxes nearby pulsars/SNRs (<1-2 kpc)
PAMELA: rising e+/e= ratio above Dark Matter annihilation/decay
10 GeV | _ Wrong Local CR model
PAMELA confirms antiproton-
spectrum

Fermi, HESS: rising e+ spectrum
above 100 GeV

27
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With IACTs: Electrons + Positrons

100~

EY(E) (GeV'm™s™sr™)

— — — — conventional diffusive modael

o 100 1000
E (GeV)
o HESS did it:
o http://lanl.arxiv.org/abs/0811.3894
o http://lanl.arxiv.org/abs/0905.0105

o From 300 GeV to 5 TeV analyzing 2004-5 data (77h good quality) and
introducing “electroness”

O Again, no-need to point sources but rather analyze OFF data
- big success!

28
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Electrons, positrons, protons, antiprotons

* Pierre Colin et al, Proceeding ICRC 2009

sE I N ~imumeery o The moon absorbs charged particle
r 3_ P = 1TeV Proton s AN TN
“enadow B |1 selectively based on charge (e, p
£ | Westward | ~ >~ Lo |34 L :I:
;T ! posltlve part.l 7 § - 45_'_ AN . etC)
o Mgon@; e 1| oo O A shadow is cast depending on:
A AdREE Charge
A o [ Energy
3_3 e (I,SRYi"'e""‘%“NS%] B 40§2‘”s‘4”‘as”‘a§ .910062:949;918 O Separatlon Of ChargeSI
¢ Complications: o Electron/Positron
o Adapted tracking system o Results can arrive in 50h (30/year) for
o High DC currrent SAELEEIED

o Reduced HV voltages (flatfield) E Pr?tolfl]i/g Ahnet:pégzigy threshold (2-3x)

~ = We can extend PAMELA results to higher
| energies (300Gev-1TeV)

e'/(e* + e

¢ (Gov) " 79
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Direct Cherenkov Observation (HESS)

~30km | O High Z particles can directly emit Cherenkov light in
e giredio.ﬁ- _“‘DC:‘-Iight hlgh atmosphere
Y N © Light arrives later 3-5ns
/\ © Short duration ~300ps
" © Toward the center of the camera
/‘;’f ;\ \JV ® Overwhelming Showers (1DC ph / 100 EAS ph.)
4k ® >1000 phe in 1 pixel
B ® Difficult Z-estimation

"
20

[¢ n

O HESS, “First ground based measurement of
= A =3 5 atmospheric Cherenkov light from cosmic rays, PRD
et 75 (2007) 042004")

=100m | O Again, Just need to analyze datal!

W HESS QGSJET (Z>24)

10'1 [ O HESS SIBYLL (Z>24)
JACEE (Z>17)
RUNJOB (Z=26)
Ichimura et al. (Z>25)

® EX5 [m?sr g TeV')

’

o

1 10 10% 10°

E[TeV]
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? Conclusions




Conclusions #1

e We have seen that IACTs can be:
e Neutrino detectors
e Cosmic-ray detectors

e From the theory point of view
e Need MC studies to really exploit possibilities for CTA
e Estimations are hardly robust

e From the experimental point of view

e Important to understand experimental features that better suite the
scenarios (CTA-north or south, high energy or low energy, etc)

e Think about sub-arrays and observation modes

e Exploit new hardware solutions (different trigger, different tracking,
different pointing modes)

e Exploit new analysis methods

32
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Conclusions #2

e I do not draw conclusions on each argument, it is clear that
several scenarios (sometimes bizzarre) had appeared.
Nevertheless, maybe searching for India we find America!

Thanks!

33
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Diffuse muon-nuetrino fluxes (Protheroe)
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log,[E*(dl/dE)/(GeV ecm™ s7*
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log(E/eV)
Figure 1. Neutrinos from cosmic ray interactions with the interstellar medium (upper curves for ¢ =
0°, b = 0°, lower curves for b = 90°): — — — Domokos et al. [9]; - - - - Berezinsky et al. [10];

Ingelman and Thunman [11]. The band with vertical hatching shows the range of atmosheric
neutrino background [12] as the zenith angle changes from 90° (highest) to 0° (lowest). Neutrinos from
cosmic ray interactions with the microwave background: — - — - — - — Protheroe and Johnson [23] for
Emax = 3 x 102 eV and 3 x 10?1 eV; ... Hill and Schramm [24]; — - -+ — -+ — - - — assuming the
highest energy cosmic rays are due to GRB according to Lee [25].
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Diffuse nu_mu fluxes from GRBs and AGNSs
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