Prospects for Dark Matter Detection from the Galactic Halo with Current IACTs

Ullrich Schwanke Humboldt University Berlin

Anisotropies of Extragalactic γ-rays

orbiting the MW

Extragalactic γ-rays

Contents

- Why is the Milky Way Halo a good target ?
- Expected fluxes and H.E.S.S. sensitivity
- Possible observation techniques and their challenges
- Summary

Why the Milky Way Halo?

- It's relatively close.
- Avoids astrophysical souces close to the GC (HESS J1745-290, diffuse emission etc.) and in the Galatic plane.
- Avoids uncertainties related to the poor knowledge of the exact shape of the DM density close to the Galactic Centre.
- Recent N-body simulations (Springel et al. (2008)) predict that the smooth halo component is the largest contribution seen by an observer placed within the MW.

H.E.S.S. Field of View (5° diameter)

Predictions (1/3)

- The highest-resolution N-body simulation (Springel et al.) used particle masses of ~1700 M_{sun} and attained converged length scales of 120 pc
- Claim that all substructures are taken into account → no additional boost factores are expected

^{*}Only the density of the smooth halo component is shown.

Predictions (2/3)

Smoothed with a PSF of 10'

Predictions (3/3)

- Einasto profile provides better description of DM density than NFW
- Boost due to substructure is only ~3 close to the Galactic centre
- Impact of baryons?
- Matching between simulated galaxy and Milky Way?

Concise Assumptions...

WIMP Mass M = 0.5 – 1 TeV

...Diffuse Fluxes

- Plotted fluxes above 200 GeV
- At 1° from the Galactic Centre, the predicted DM photon flux is a factor ~10 (~20) below the diffuse emission from the Galactic plane (the electron flux)
- Flux falls by one order of magnitude when going from 1° to 8°

DM Annihilation Flux

- The estimated flux is too low to measure a gradient within one field of view
- Alternatively: Sum flux over areas covering a good fraction of the FoV (or the entire FoV)
- Use areas further away from the GC for normalization
- Exploit spectral features (maybe on top of an astrophysical background)

H.E.S.S.

Sensitivity (1/3)

- Blanked out Galactic plane (i.e. considered only |b|>0.8°)
- Events within 2° radius of observation position

Sensitivity (2/3)

- Hillas-type analysis and (loose) selection cuts
- H.E.S.S. effective areas evaluated at 20° zenith
- ~100 events per hour
- Backgrounds:
 - Hadrons+Electrons (1.5 Hz): ~15 Hz (from data)
- A better analysis should reduce the background rate by a factor 2-3

Sensitivity (3/3)

- After 5h ON + 5h OFF, the limit is more constraining than limits obtained from the dwarf galaxies... assuming the astrophysical factor from the Aquarius simulations
- Caveat: perfect background subtraction
- Sensitivity for the DM halo at a boost factor of O(1)

For Experimentalists

Flux Measurement

- Compare sky regions within one FoV that have identical acceptance but different distance from the GC
- Compare FoVs that differ *only* by their distance to the Galactic centre
 - Varying zenith and azimuth angles → ON-OFF data with offset in RA or drift-scan data
 - Varying weather conditions and detector state → take ON and OFF in same night; monitoring
 - Varying NSB/stars in FoVs → careful selection of FoVs; corrections
- Take data with constant acceptance (drift-scan)

Experimental Challenges

- The ON-OFF technique requires careful consideration of systematic effects, like
 - Varying night sky background, stars in FoV
 - Varying weather conditions, varying camera state

For Experimentalist

Summary

- A search for diffuse DM photons from the Halo at distances
 ≥0.5° from the GC with IACTs has potential
 - Reduced uncertainties on astrophysical factor (DM profiles)
 - Possibly better limits on $<\sigma$ v> than from dwarf galaxies
- The measurement of diffuse photon fluxes is challenging for IACTs, and requires dedicated techniques and careful control of systematic effects
- Current IACTs (like H.E.S.S. (II)) are an ideal testing ground and first results will be published soon
- Prospects for CTA should be good we are working out the details

Thank you.