Southampton

Timing properties of blazar light curves

Dimitrios Emmanoulopoulos

First LINK Workshop: Probing physics beyond the Standard Model with CTA, Friday 12th November 2010, Oxford UK

Overview

VHE AGN

Properties of blazar light-curves in VHE?

Current results

VHE AGN

<u>Object</u>	<u>Redshift</u>	~40 Extra-galactic ojects
M 87	0.004	
Mrk 421	0.030	
Mrk 501	0.034	/ 3 LBLs
1ES2344+514	0.044	4 IBLs
Mrk 180	0.046	6 26 HBLs
1ES 1959+650	0.047	3 FSROs
BL Lac	0.069	
PKS 0548-322	0.069	
PKS 2005-489	0.071	E 2 Str.Bursts
RGB J0152+017	0.080	
W Comae	0.102	
PKS 2155-304	0.116	
H 1426+428	0.129	
1ES 0806+524	0.138	
1ES 0229+200	0.139	
H 2356-309	0.165	
1ES 1218+304	0.182	
1ES 1101-232	0.186	
1ES0347-121	0.188	
1ES 1011+496	0.212	00 01 02 03 04 05
PG 1553+113	>0.25	0.0 0.1 0.2 0.3 0.7 0.3
3C 279	0.536	Kedshift

<u>Object</u>	<u>Redshift</u>
M 87	0.004
Mrk 421	0.030
Mrk 501	0.034
1ES2344+514	0.044
Mrk 180	0.046
1ES 1959+650	0.047
BLLac	0.069
PKS-0548-322	0.069
PKS 2005-489	0.071
RGBJ0152+017	0.080
W Comae	0.102
PKS 2155-304	0.116
H1426+428	0.129
1ES-0806+524	0.138
1ES-0229+200	0.139
H 2356-309	0.165
1ES1218+304	0.182
1ES1101-232	0.186
<u>1ES0347-121</u>	0.188
1ES1011+496	0.212
PG 1553+113	>0.25
3C 279	0.536

No evidence for variability

Object	Redshift	_
M 87	0.004	
Mrk 421	0.030	
Mrk 501	0.034	
1ES2344+514	0.044	
Mrk 180	0.046	
1ES 1959+650	0.047	
BLLac	0.069	
PKS-0548-322	0.069	Very Weak evidence for variability
PKS 2005-489	0.071	very vreak evidence for variability
RGB J0152+017	0.080	(Years)
WComae	0.102	
PKS 2155-304	0.116	
H1426+428	0.129	
1ES 0806+524	0.138	
1ES 0229+200	0.139	
H 2356-309	0.165	
1ES 1218+304	0.182	
1ES1101-232	0.186	
1ES0347-121	0.188	
1ES1011+496	0.212	
PG 1553+113	>0.25	
3C 279	0.536	

<u>Object</u>	<u>Redshift</u>
M 87	0.004
Mrk 421	0.030
Mrk 501	0.034
1ES2344+514	0.044
Mrk 180	0.046
1ES 1959+650	0.047
BLLac	0.069
PKS-0548-322	0.069
PKS 2005-489	0.071
RGB J0152+017	0.080
W Comae	0.102
PKS 2155-304	0.116
H1426+428	0.129
1ES-0806+524	0.138
1ES-0229+200	0.139
H 2356-309	0.165
1ES 1218+304	0.182
1ES 1101-232	0.186
1ES0347-121	0.188
1ES1011+496	0.212
PG 1553+113	>0.25
3C 279	0.536

Weak evidence for variability (Months)

<u>Object</u>	Redshift	
M 87	0.004	—
Mrk 421	0.030	
Mrk 501	0.034	Some indications of daily variations
1ES2344+514	0.044	× 10 ⁻¹¹
Mrk 180	0.046	≪ 6 MAGIC 3C 279
1ES 1959+650	0.047	ξ 4 E > 200 GeV
BLLac	0.069	$\mathbf{E}_{\mathbf{z}}$
PKS-0548-322	0.069	
PKS 2005-489	0.071	
RGB J0152+017	0.080	₹ ₋₂
W Comae	0.102	$> 8 \times 10^{-3}$
PKS 2155-304	0.116	$\exists - R$ -band
H1426+428	0.129	
1ES-0806+524	0.138	
1ES-0229+200	0.139	5
H 2356-309	0.165	
1ES 1218+304	0.182	53760 53770 53780 53790 53800 53810 53820 53830 MID
1ES 1101-232	0.186	
1ES0347-121	0.188	
1ES 1011+496	0.212	
PG 1553+113	>0.25	Teshima et al., Proc. 30 th ICRC, 3 , 1045–1048 (2007)
3C 279	0.536	

3C 279

<u>Object</u>	Redshift
M 87	0.004
Mrk 421	0.030
Mrk 501	0.034
1ES 2344+514	0.044
Mrk 180	0.046
1ES 1959+650	0.047
BL Lac	0.069
PKS-0548-322	0.069
PKS 2005-489	0.071
RGB J0152+017	0.080
W Comae	0.102
<u>PKS 2155-304</u>	0.116
H1426+428	0.129
1ES-0806+524	0.138
1ES-0229+200	0.139
H 2356-309	0.165
1ES 1218+304	0.182
1ES1101-232	0.186
1ES0347-121	0.188
1ES1011+496	0.212
PG 1553+113	>0.25
3C 279	0.536

The classical sources!

Object	<u>Redshift</u>
M87	0.004
<u>Mrk 421</u>	0.030
Mrk 501	0.034
1ES234 4+514	0.044
<u>Mrk 180</u>	0.046
1ES 1959+650	0.047
BL Lac	0.069
PKS-0548-322	0.069
PKS 2005-489	0.071
RGB J0152+017	0.080
W Comae	0.102
<mark>PKS 2155-304</mark>	0.116
H1426+428	0.129
1ES-0806+524	0.138
1ES-0229+200	0.139
H 2356-309	0.165
1ES 1218+304	0.182
1ES 1101-232	0.186
1ES0347-121	0.188
1ES 1011+496	0.212
PG 1553+113	>0.25
3C 279	0.536

FOR QG studies!!!

Tluczykont et al. 2010, (arXiv:1010.5659)

MJD [days]

Aharonian et al. 2007 (HESS Collaboration), Apj, 664, L71

Light-curve decomposition \iff Power spectral density

For a set of observations x_i measured at t_i (i = 1, ..., N)

$$|DFT(f_j)| = \left|\sum_{i=1}^N x_i e^{2\pi i f_j t_i}\right|^2$$

where $j = \frac{j}{N\Delta t}$ and $j = 1, \dots, N/2$

Smoothing out features < 20 s

Variabity power is dropping towards small time-scales.

- No need to split the light-curve in energy bands.
- You can average periodograms over different epochs.
- You can readily pinpoint the noise level.

In the frequency domain: Lag-analysis requires knowledge of the phase.

In the frequency domain: Lag-analysis requires knowledge of the phase. Flux (<300GeV) Flux (>300GeV) Time t Time t

In the frequency domain: Lag-analysis requires knowledge of the phase. Flux (<300GeV) Flux (>300GeV) Time t Time t

In the frequency domain: Lag-analysis requires knowledge of the phase.

All sinusoids have the same phase-shift. This can be induced by QG effects.

In the frequency domain: Lag-analysis requires knowledge of the phase.

In the presence of QG effects

All the time-scales experience the same time-shift!

In the frequency domain: Lag-analysis requires knowledge of the phase.

In the presence of QG effects

Variability components of low-energy photon Variability components of high-energy photons

Cross-spectrum analysis.

$$\phi(f) = \arg \langle P_{\rm L}(f)^* P_{\rm H}(f) \rangle$$

with an error

$$\Delta\phi(f) = \frac{\sqrt{1 - \gamma(f)^2}}{|\gamma(f)|\sqrt{2N_s}}$$
$$\gamma(f)^2 = \frac{|\langle P_{\rm L}(f)^* P_{\rm H}(f)\rangle|^2}{\langle |P_{\rm L}(f)^2|\rangle\langle |P_{\rm H}(f)^2|\rangle}$$

Cross-spectrum analysis.

$$\phi(f) = \arg \langle P_{\rm L}(f)^* P_{\rm H}(f) \rangle$$

and the time-lag

$$\tau(f) = \frac{\phi(f)}{2\pi f}$$

Keep in mind, for QG-effects: $\tau(f) = \text{const.}$

Cross-power-spectrum between 0.2–0.8 TeV and > 0.8 TeV

Aharonian, F. et al. 2008, (HESS Collaboration), PRL, 101, 170402 (2008)

■ $\xi < 200$ from Mrk 421 (z=0.030)

Biller, S. D. et al. 1999, (WHIPPLE Collaboration), PRL, 83, 2108

■ $\xi < 30$ from Mrk 501 (z=0.034)

Albert, J. et al. 2008, (MAGIC Collaboration), Phys. Lett. B, 668, 253-257

■ *ξ* < 17 from PKS 2155-304 (z=0.117)

Aharonian, F. et al. 2009, (HESS Collaboration), PRL, 101, 170402

BUT...

Mastichiadis, A. et al., A&A, 491, 2, L37–L40, (2008)

Conclusions

Population studies are necessary!!! CTA is the next step.

