LIV searches with H.E.S.S.

LINK workshop, RAL UK

Agnieszka Jacholkowska, 12/11/2010

OUTLINE

Introduction

- LIV searches with Active Galaxies
- Methods used in analyses
- Results on Lorentz Symmetry breaking and Quantum Gravity scale
- **Discussion and Prospects**

Motivation

• Fundamental Symmetries at high energies

Strong theoretical interest in possible high energy violation of local Lorentz Invariance (LI) → local LI may be not exact symmetry of the vacuum

- Quantum Gravity scale
 - LI violation (LIV) is <u>not a necessary</u> feature of Quantum Gravity (QG) however, LIV effects at Planck scale provide observational window of QG effects
 → Study of LIV at ~ E_p energy (breakdown of "standard" physics laws) provides a signature of QG phenomena
 - absence of LIV provides constraints on viable QG theories
 Discard models which predict LIV phenomena

Modified Dispersion relations

- \rightarrow Modification of speed of light (c) in vacuum
- \rightarrow T-o-F studies with photons

Un-polarized Photons with energy E and momentum p:

$$c^{2}p^{2} = E^{2}(1 + \xi(E/E_{P}) + \zeta(E/E_{P})^{2} + ...)$$

speed of light in vacuum:

predicted by some models of String theory and Loop QG

$$v = \delta E / \delta \vec{p} = c(1 - \xi (E/E_P) + \zeta (E/E_P)^2)$$

Detect LIV \rightarrow measure parameters ξ , ζ (> 0 or < 0)

Tests of LIV & Astrophysics

• Astrophysical messengers

Photons: simple modeling, limited in ΔE

- Electrons: synchrotron radiation of pulsars UHECRs: model dependent formalism for threshold modifications of the GZK limit Neutrino: limited in statistics, not seen from sources Gravitons: not seen yet
- Astrophysical experiments with Photons
 - Space missions: excellent space detectors for violent event detection Pulsars, GRBs, AGNs – past BATSE, HETE2, present SWIFT, Fermi, future SVOM, ...
 - Ground based telescopes: highest ΔE, limited variability of the AGN flares H.E.S.S., MAGIC, VERITAS, and future CTA

Dispersion measurements

(G. Amelino-Camelia, J. Ellis, S. Sarkar, et al., Nature 395, 1998)

→ Active Galaxies and Gamma-Ray Bursts are well suited :

- Transient sources
- Bright
- At cosmological distances
- Wide energy range emission (0.1 MeV TeV)

• Figure of Merit of a source:

$$\Delta t = \xi rac{L}{\mathrm{c}} rac{\Delta E}{\mathrm{E}_{\mathrm{QG}}}$$

L distance of the source, ΔE energy lever-arm, $E_{\alpha\alpha}$ scale if $\xi = \pm 1$

Caveat: intrinsic time lags Energy dependent time-lags of 2 origins: emission + propagation (redshift dependence !)

 Light propagation from distant astrophysical sources is affected by expansion of the Universe $\Delta t = \mathrm{H}_0^{-1} \frac{\Delta E}{\mathrm{Eoc}} \int_0^z \frac{(1+z)dz}{h(z)}$

$$h(z) = \sqrt{\Omega_{\Lambda} + \Omega_M (1+z)^3}$$

Active Galaxies

Blazars - variable AGNs

- extra-galactic sources producing γ-rays via gravitational potential energy release of matter from an accretion disk surrounding Super Massive Black Hole (SMBH)
- TeV regime: redshift values 0.03 0.4 energy spectrum subject to EBL effects
- beamed emission, large inferred luminosities, relativistic plasma jets pointing to the observer and flux variations by factors > 10 over time scales < 1hour (flares)

Active Galaxies: flares

PKS 2155-304 "Big Flare" (H.E.S.S. July 2006)

LINK workshop

A. Jacholkowska, 12/11/2010

Methods and Procedures

Cross Correlation Function (MCCF)	H.E.S.S. (AGN) BATSE (GRB)	low systematic effects
Energy Cost Function (ECF)	MAGIC (AGN)	
Wavelet Transforms (CWT)	H.E.S.S., (AGN) BATSE, HETE2, SWIFT (GRB)	driven by LC binning
Likelihood fit	MAGIC, H.E.S.S. (AGN) INTEGRAL (GRB)	best statistical precision
Cost Function/Shannon	Fermi (GRB)	

→ Precision studies require: evaluation of systematic effects and error calibrations

Methods and Procedures

→ Precision depends on pulse width and spectral index example : Likelihood fit for a 1 gaussian LC

Methods and Procedures

\rightarrow For robust results:

- use of at least 2 methods (probe different aspects of the Light Curve)
- need of error calibration by Light Curve simulations
- increase of precision \rightarrow need of systematic effect evaluation

H.E.S.S. - PKS2155-304 "Big" flare

- → Exceptional flare in 2006: 7 x CRAB flux
- Statistics after cuts ~ 10000 photons in 1.5 hrs
- Energy spectrum: broken power-law No strong indication of spectral variability
- Light Curve presents several well resolved bursts described by fast rise, slow decay similar to GRBs
- Fourrier power spectrum analysis shows variability < 600 s

Here: search for time-delays between Light Curves of different energies to quantify a possible energy dispersion with 3 methods

H.E.S.S. - PKS 2155-304 Big flare

 \rightarrow Find a time-lag with Light Curves in 2 different energy ranges

H.E.S.S. constraints with Likelihood

LINK workshop

A. Jacholkowska, 12/11/2010

H.E.S.S. constraints with Likelihood

→ Event-by-event Likelihood fit with a template (model) light curve → No significant time-lag detected in PKS2155-304 Big Flare data > 2σ in Δt

	Estimated error	Change in ϵ	stimated τ_l (s TeV ⁻¹)	Change	in estimated τ_q s TeV ⁻²
Selection cuts		< 5		< 5	
Background contribution	1%	< 1		< 1	
Acceptance factors	2%	< 1		< 1	
Energy resolution	1%	< 1		< 1	
Energy calibration	10%	< 2		< 2	
Spectral index	1%	< 1		< 1	
Calibration systematics (constant, shift)	10%	< 5		< 1	
$F_S(t)$ parameterization		≈7		≈ 3	_
Total		< 10.3		< 6.6	

Best constraints on Quantum Gravity scale with AGNs:

Linear term: $E_{QG} > 2.1 \ 10^{18}$ at 95% CL Quadratic term: $E_{QG} > 0.5 \ 10^{11}$ at 95% CL

Submitted to Astrop. Phys.

MAGIC: Mrk 501 2005 flare

 \rightarrow E_{QG} > 0.3 10¹⁸ GeV at 95% CL (linear model)

Idea:

- apparent duration of the pulse is increased by the dispersion
- the energy/unit t decreases with distance from the source
- so dispersion can be extracted by maximizing the energy emitted by the source

ECF_L = $\Sigma_{T1 < t < \tau^2} E(i)$ the transformation is repeated for many values of τ MAGIC + J. Ellis et al., Phys.Lett.B, 2009

Position of ECF maximum: value of τ which recovers the signal in the sense of maximizing power

vacuum refractive index linear in energy

AGN limits on LI Violation mass scales

Present results from T-o-F studies

Source	Experiment	Method	Results linear, quadratic (GeV)	
Mrk 421	Whipple	Likelihood	E _{QG} > 0.6x10 ¹⁷	
Mrk 501	MAGIC	ECF + Likelihood	E _{QG} > 0.3x10 ¹⁸ , > 0.3 10 ¹¹	
PKS 2155-304	H.E.S.S.	MCCF + Wavelets + Likelihood	E _{QG} > 2.1x10 ¹⁸ , > 0.5 10 ¹¹	
GRB 021206	RHESSI	Fit + Mean arrival time in a spike	E _{QG} > 1.5x10 ¹⁷	
GRB 080916C	Fermi GBM + LAT	$\Delta t = t(Photon with highest E) - t_0$	E _{QG} > 1.5x10 ¹⁸	
GRB 090510	Fermi GBM + LAT	CCF, cost function/Shannon	E _{QG} > 1.2x10 ¹⁹ , > 0.5 10 ¹¹	
9 GRBs	BATSE + OSSE	Wavelets	E _{QG} > 0.6x10 ¹⁶	
15 GRBs	HETE-2	Wavelets	E _{QG} > 0.4x10 ¹⁶	
17 GRBs	INTEGRAL	Likelihood	E _{QG} > 0.4x10 ¹¹	
35 GRBs	BATSE + HETE-2 + SWIFT	Wavelets	E _{QG} > 1.4x10 ¹⁶	
CRAB pulsar	EGRET	Δt of photons > 2 GeV	E _{QG} > 0.2x10 ¹⁶	

Discussion

• Present results

- interesting constraints on LIV with limited number of fast AGN flares
- various methods tested and used
- need of a factor of ~5 in sensitivity: $E_{QG} > 16\% E_{P}$
- in future: improve constraints on the "quadratic" term
- source effects cannot be excluded
- Outreach for Theory
- present limits on Lorentz Invariance and Quantum Gravity with AGNs approach Planck scale in case of "Linear" models
 > the limit on the Quadratic term does not exclude any theoretical model
- importance of LIV searches with different type of sources, redshift values, energy ranges

Prospects

- Prospects in Physics
 - studies of dependencies with redshift procedure to be developed: different experimental conditions
 - study effects of "Fuzziness" on Pulse shape
 - absorption of TeV photons: threshold modifications
 - synergy with GRBs in Fermi
- Prospects for experiments
 - new phases: MAGIC2 & H.E.S.S.2 !
 - CTA: follow-up of AGNs: more rapid AGN flares will be detected increase in A_{eff} and E_{min} & E_{max}: increase in photon statistics energy lever-arm access to higher redshift
 - possible long GRB detection will open new domain !

Prospects : absorption in the spectra of AGNs

Jacob & Piran, 2008

- Principle: study of cosmological interaction between γ-rays and infra-red background photons
- Deformed pair-production threshold due to LIV effects

- → exponential cutoff due to EBL in presence of LIV: re-emergence of photons above threshold energy E*
- Warning: the break in the spectrum should result from EBL attenuation and *not to be* an intrinsic feature of the source

CTA target sensitivity

M. Raue, 2010

