

FEM analysis of Current Dissipation in Lightning Strike Protection Systems

UCM-ELEC

onda Clara Oliver Oibar Martinez, Patricia Marguez and Jose Migue

Silvia Ronda, Clara Oliver, Oibar Martinez, Patricia Marquez and Jose Miguel Miranda

Main topics

The importance of lightning protection an earthing
Finite Element Simulation basics
Simulation of a lightning strike in LST Earthing System actual design

Lightning

Lightning: "Natural phenomena that can discharge currents of the order of hundreds of kiloamps in a fraction of a second" This can have devastating effects.

Lightning is an imperative for modern structures

Ligthning protection system design

International Electrotechnical Commission

IEC 62305-1	General Principles
IEC 62305-1	Risk Management
IEC 62305-3	Physical Damage to Structures and Life Hazard
IEC 62305-4	Electrical and Electronic Systems

Edition 2.0 2010-12

INTERNATIONAL STANDARD NORME INTERNATIONALE

Protection contre la foudre – Partie 1: Principes généraux

Finite Element Method basics

Subdomains: Meshing

Tetrahedral Cubic

Our design for LST Earthing System

Software to simulate multiphysics processes

m and mm present

Specific mesh by parts

Finite Element Method basics

Reference design

(1) (2) Steel* solid blocks. They correspond to the metal grid of the reinforce concrete.

(3) Metal plates (Steel*)

*Material properties of Steel: conductivity of 1.12 $10^7 S/m$

Soil resistivity: **1.5** $\mathbf{k}\Omega \cdot \mathbf{m}$ (LST1 reference)

Finite Element Method basics

Conditions

Point source of current

Ground Surface (at the infinite)

Simulation of a lightning strike in a Earthing system

Simulation of a lightning strike in a Earthing system

direction

Simulation of a lightning strike in a Earthing system

High risk of strong magnetic coupling !! ×10⁸ 4 3.5 3 2.5 A 2 m 7.8 2.3 21.1 10.6 19.4 0.5 19.1 25.3 30C $\times 10^{8}$ 18.9 1.4 0.9 1,8 0.8 2.3 0.7 2.6 0.6 A/m^2 2.0 0.5 0.4 0.3 0.2 0.1

Averaged current in kA within the plates

Reduction of one order of magnitude between the current injected and the one that flows through the plates

