

Earthing Issues at El Roque de los Muchachos Observatory

UCM-ELEC

Madrid, 24th July

Silvia Ronda, Oibar Martinez, Clara Oliver, Patricia Marquez and Jose Miguel Miranda

Main topics

- □ Why Earthing?
- The importance of soil resistivity and its influence in earth resistance value
- □ Representative situations in ORM
- □ How to improve Earthing systems

Earthing

Earth Resistance: "Resistance between the electrode and the point of zero potential (the infinite earth)"

Earthing System: Conducting connection between an electrical circuit and the Earth to prevent damage in the case of high discharges. It should be AS LOW AS POSSIBLE. Standards recommend < 10 Ω (low frequency) [IEC-62305-3]. It is influenced by:

- Resistance of the electrodes
- Contact resistance between electrode and soil
- Resistivity of the soil

$$R \neq \rho \parallel$$

$$\ell \quad S \quad R = \rho \frac{\ell}{S} = \frac{\ell}{\sigma S} \quad [\rho] = Ohm \cdot m \quad Depends \text{ on the material only} \quad Depends on the material and geometry}$$

Soil resistivity

Resistivity depends on the type of soil

Soil Type	Resistivity (Ohm-meter)		
	Minimum	Mean	Maximum
Clay	5	27.2	60
Sand/Clay	6.28	215.0	346.83
Limestone	36.4	50.2	95.8
Sand	50	270	476.58
Laterite	961.3	1200	1528.7
Rock	1557	2500	19,012.92

Volcanic terrain

Geotechnical studies

Soil resistivity measurement: Wenner Method

4 electrodes method

$$\rho(a) = 2 \pi a R = 2 \pi a \frac{V}{I}$$

Simulations with COMSOL

Layer 1	σ=1e-3	
Layer 2	σ=2e-3	
Layer 3	σ=3e-3	

Equipotential surfaces Current density lines and direction

Soil resistivity measurement in ORM

KΩ·m

12	12	NR A	
10	10	and the second	
	MAGIC II 8	4 6 8	
8	8 4 5 LST1	- A CARAGE	Not south
	8	LST2	
6	6	Contraction of the second	at the second
	MAGIC I LST4		
4	4 6 4		LST3
	8 6	8	
-			
2	2 Google Earth	26.7	N
	© 2020 Croogle	100 m	

Site	$\overline{ ho}$ (k Ω m)	
MAGIC I	0.57	Homogeneous
MAGIC II	0.53	Homogeneous
LST1	1.44	Homogeneous
LST2	4.3-6.1	Non-Homog.
LST3	1.7-11.5	Non-Homog.
LST4	2.45	Homogeneous

Soil resistivity measurements made in ORM. The numbers correspond to the interelectrode distance in m, roughly equal to depth.

Representative situations in ORM

HOMOGENEOUS HIGH RESISTIVITY SOIL

NON HOMOGENEOUS SOIL WITH VERY HIGH RESISTIVITY LAYERS

Voltage distribution when resistivity is measured with Wenner method

Earthing Issues at ORM. UCM-ELEC

Possible solutions to reduce earth resistance

- Chemical treatment of soil or use low resistivity materials
- Burying metal grids plates (horizontal)
- Electrodes driven vertical into the ground
- Electrodes or Earthing Systems interconnection

Design in COMSOL for optimizing the telescopes Earthing

- (1) Soil
- (2) Infinite Element Domain Layer
- (3) Extra fine mesh zone surrounding earth resistance structure
- (4) Earth resistance structure
- (5) Ground

Burying metal plates (horizontal and vertical)

HOMOGENEOUS SOIL

NON HOMOGENEOUS SOIL

1 max

0.5

0

2

Voltage distribution

Burying vertical electrodes in homogeneous soil

Electrodes or Earthing Systems interconnection

Earthing systems connected

If the resistances work as if they are pararell connected the value expected if we interconnet two LST1 is:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \cong \frac{2}{15.2} \to R \cong 7.59 \,\Omega$$

This is verifyed with simulation in LST1 (homogeneous soil)

Electrodes or Earthing Systems interconnection

 No connected

 LST1
 ~15.2 Ω

 LST3
 ~69.2 Ω

Expected value for earth resistance of LST1-LST3 interconnection:

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} \rightarrow R \cong \mathbf{12.5} \,\mathbf{\Omega}$$

Simulation of the resitance in LST3

Possible solutions to lowering earth resistance

- □ Soil resistivity is necessary when determining the design of the grounding system for new installations.
- □ Poor soil conditions (high resistivity) can be overcome with specific grounding designs.
- Our findings might help to efficiently design the future ground structures for the installations under construction and are applicable to other similar sites with soils of volcanic nature.

Solution	Homogeneous soil (LST1)	Non- homogeneous soil (LST3)
Low resistivity materials or chemical treatment		
Burying metal grids or plates (horizontal)		
Vertical electrodes buried into the ground		
Electrodes or earthing systems interconnection		

