

Simulations of the Morphology of HESS J1804-216 for observations with HESS and CTA

Kirsty Feijen

High Energy Astrophysics Group April 16th 2020

High Energy Stereoscopic System

HESS Galactic Plane Survey - 2018

8 SNR

12 PWN

36 Unidentified

+0

-2

-3

10

8

Galactic Longitude (deg)

6

4

VTS

Production of gamma-rays

HADRONIC

• π_0 decay

LEPTONIC

Bremsstrahlung

Inverse Compton

Synchrotron Radiation

Molecular Clouds

- Clouds serve as a target for cosmic ray (CR) collisions
 - Dense regions of gas give information about gammaray sources
- Important to understand the interstellar gas surrounding a source
- Different gas tracers include:
 - Carbon monoxide (CO)
 - Atomic hydrogen (HI)

3mm: ¹²CO, ¹³CO, C¹⁸O, C¹⁷O **7mm**: CS, SiO, HC₃N **12mm**: NH₃

Parkes + ATCA = Southern Galactic Plane Survey (SGPS) of HI

HESS J1804-216

 HESS J1804-216 is one of the most mysterious and brightest TeV gamma—ray sources discovered

• $F_{\gamma}(> 200 \text{GeV}) = 5.32 \times 10^{-11} \text{ cm}^{-2} \text{s}^{-1}$

•
$$L_{\gamma} \sim 5 \times 10^{33} (d_{kpc})^2 \text{ erg s}^{-1}$$

- $\Gamma = 2.69 \pm 0.04$
- No objects coincide exactly

SNR 8.3-0.1

- Radius: 0.04°
- Distance: 16.4 kpc

I720MHZ OH Maser

Distance: 4.6 kpc

SNR G8.7-0.1

- Radius: 0.42°
- Distance 4.5 kpc
- Age: 15 kyr

Top: TeV gamma-ray significance map of HESSJ1804–216, along with potential counterparts FGES = Fermi Galactic Extended Sources \rightarrow one of the Fermi catalogs

PSR	J1803-2137	J1803-2149	J1806-2125
Distance (kpc)	3.8	1.3	10
Age (kyr)	15.8	86.4	65
Spin down power, \dot{E} (10 ³⁵ erg s ⁻¹)	22.2	6.41	0.41
TeV gamma-ray efficiency (L_{γ}/\dot{E})	3%	١%	I 20%

Spectra

- Region taken to encompass the 5σ level of HESS J1804-216 on the Mopra $^{12}\mathrm{CO}$ cube
 - Cube is Doppler-shifted velocity along the z-axis
 - This is used to create a spectrum
- The Mopra Galactic Plane CO survey data: ¹²CO and ¹³CO

Total Column Density

9.60

9.209

8.80

8.00°

7.60

8 4 0

Galactic Longitude

7.20°

Components of Most Interest

PSR J1803-2137 ~25km/s (component C) from the dispersion measure of the pulsar
 SNR G8.7-0.1 ~35km/s and 1720MHZ OH maser 36km/s (component D)

HESS [1804-216 | K. Feijen

- Older SNRs are believed to have a large enough hadronic (proton-proton) contribution to account for TeV gamma—ray emission
- SNR G8.7-0.1 and the progenitor SNR of PSR J1803-2137 are two plausible candidates for the acceleration of CRs for the hadronic scenario
- The CR enhancement factor (k_{CR}) is given through:

$$\bullet F(\geq E_{\gamma}) = \begin{cases} 2.85 \times 10^{-13} E_{TeV}^{-1.6} \left(\frac{M_5}{d_{kpc}^2}\right) k_{CR} & \text{cm}^2 \text{s}^{-1} \\ 1.45 \times 10^{-13} E_{TeV}^{-1.75} \left(\frac{M_5}{d_{kpc}^2}\right) k_{CR} & \text{cm}^2 \text{s}^{-1} \end{cases}$$

• SNR G8.7-0.1: for TeV energies $k_{CR} \sim 37$ and for GeV energies is $k_{CR} \sim 9$

• Progenitor SNR: for TeV energies $k_{CR} \sim 57$ and for GeV energies is $k_{CR} \sim 14$

Hadronic Scenario – CR model

The isotropic distribution of CR protons

$$f(E,R,t) \approx \frac{N_0 E^{-\alpha}}{\pi^{3/2} R_{dif}^3} \exp\left(-\frac{(\alpha-1)t}{\tau_{pp}} - \frac{R^2}{R_{dif}^2}\right) \text{ [cm^{-3} GeV^{-1}]}$$

 Diffusion radius is for CR protons of energy E propagating through the ISM during time t:

$$R_{dif} \equiv R_{dif}(E,t) = 2\sqrt{D(E)t \frac{\exp(t\delta/\tau_{pp}) - 1}{t\delta/\tau_{pp}}}$$

- N_0 , determined assuming the SNR is at early epoch of evolution (~Iyr) $\rightarrow R_{dif} = R$, and 10^{50} erg in CRs is contained within the SNR
- The cooling time for proton-proton collisions is:

$$au_{pp} = 6 imes 10^7 (n/{
m cm}^{-3})^{-1}$$
 yr

The diffusion coefficient is:

$$D(E) = \chi D_0 \left(\frac{E/GeV}{B/3\mu G}\right)^{\delta}$$

• where $D_0 = 3 \times 10^{27}$, $B \sim 10 \mu G$ and $\delta \& \chi$ are varied

Hadronic Scenario – CR model

The differential flux of protons is then given by:

 $J(E, R, t) = (c/4\pi)f(E, R, t)$ [cm⁻³ s⁻¹GeV⁻¹ sr⁻¹]

- For HESS J1804-216 the spectral index is $\alpha = 2.69$
- Contribution from the spectrum of CR protons observed at Earth is given by:

$$J(E) = 2.2 E^{-2.75}$$
 [cm⁻³ s⁻¹GeV⁻¹ sr⁻¹]

- SNR G8.7-0.1: in component D (d = 4.5kpc $\therefore v \sim 35$ km/s) the distance from the accelerator to the cloud is ~12pc
- Progenitor SNR: in component C (d = 3.8kpc $\therefore v \sim 25$ km/s) the distance from the accelerator to the cloud is ~10pc

Proton spectra – SNR G8.7-0.1

Proton spectra – SNR G8.7-0.1

- Consider source specific model where the age of SNR G8.7-0.1 is taken to be 15-28kyrs
- Figure shows that the two cases broadly match the GeV and TeV CR enhancement factors for $\chi = 0.01$ and δ set to 0.3 or 0.5
- Trend shows lower energy population of CRs for older age
- Higher energy CRs are seen to escape first, as expected
- Evident that CRs require slow diffusion ($\chi = 0.01$) in order to contribute to the gamma-ray emission from HESS J1804-216

Proton spectra – PSR J1803-2137 progenitor SNR

Proton spectra – PSR J1803-2137 progenitor SNR

- Consider source specific model where the age of the progenitor SNR of PSR J1803-2137 is taken to be 16 kyr (the age of PSR J1803-2137)
- Figure shows that the three cases broadly match the GeV and TeV CR enhancement factors for $\chi = 0.01$ and $\delta = 0.3$ or 0.5 and $\chi = 0.001, \delta = 0.7$

 Slow diffusion consistent with other studies on the W28 SNR and IC443

Gamma-ray flux predictions

Gamma-ray production rate is computed through:

$$\Phi_{\gamma}(E_{\gamma}) = cn_H \int_{E_{\gamma}}^{\infty} \sigma_{inel}(E_p) J_p(E_p) F_{\gamma}\left(\frac{E_{\gamma}}{E_p}, E_p\right) \frac{dE_p}{E_p} \quad [\text{cm}^{-3} \text{TeV}^{-1} \text{s}^{-1}]$$

- Where $J_p = f(E, R, t)$ is the production rate of CR protons, n_H is the number density of hydrogen gas, $\sigma_{inel}(E_p)$ is the elastic cross-section of proton-proton interactions, F_{γ} is the total gamma-ray spectrum
- The differential gamma-ray spectrum is given through:

$$\mathcal{F} = \frac{1}{4\pi} \int_0^{l_{max}} \Phi_{\gamma}(E_{\gamma}) dl = \frac{\Phi_{\gamma}(E_{\gamma})}{4\pi} dl_{max} \quad [\text{cm}^{-2} \text{TeV}^{-1} \text{ s}^{-1} \text{ sr}^{-1}]$$

Must account for the steradian per pixel:

$$\mathbf{F} = \frac{\Phi_{\gamma}(E_{\gamma})}{4\pi} dl_{max} \left(\frac{A}{D^2}\right) \quad [\mathrm{cm}^{-2}\mathrm{TeV}^{-1}\,\mathrm{s}^{-1}]$$

• Where A=area of pixel= $(Dtan\theta_{pixel})^2$, D=distance to the source

Flux comparison model – SNR G8.7-0.1

- The data taken of HESS J1804-216 was in a region of ~0.4° radius
- To compare the gamma-ray flux obtained from the 2004 observations to my model, the flux is summed in this 0.4° region
 - This gives a flux value for each energy in the gamma-ray flux cube

	HESS	My model	My model
	Observations	$(\delta = 0.3, \chi = 0.01)$	$(\delta = 0.5, \chi = 0.01)$
Amplitude (TeV ⁻¹ cm ⁻² s ⁻¹)	5.44×10^{-12}	9.98×10^{-13}	3.71×10^{-13}
Index	2.72 ± 0.04	2.80	2.95

HESS J1804-216 | K. Feijen

HESS observation data: Aharonian et al, 2006: <u>https://arxiv.org/abs/astro-ph/0510397</u>

Flux comparison model – PSR J1803-2137 progenitor SNR

- The data taken of HESS J1804-216 was in a region of ~0.4° radius
- To compare the gamma-ray flux obtained from the 2004 observations to my model, the flux is summed in this 0.4° region
 - This gives a flux value for each energy in the gamma-ray flux cube

HESS J1804-216 | K. Feijen

HESS observation data: Aharonian et al, 2006: <u>https://arxiv.org/abs/astro-ph/0510397</u>

Model Map Integral flux (>I TeV) – SNR G8.7-0.1

HGPS flux map: HESS Collaboration at https://arxiv.org/pdf/1804.02432.pdf

Model Map Integral flux (>I TeV) – PSR J1803-2137 progenitor SNR

HESS J1804-216 | K. Feijen

Counts explanation

- Predicted gamma—ray flux maps are used to produce gamma—ray counts maps for both HESS and CTA
- Use the open-source python package Gammapy
- The simulations require a spectral model for each gamma-ray flux cell
- The current two spectral models used for the simulations are a power law and logparabola

$$\Phi_{\rm PL}(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-\Gamma} \qquad \qquad \Phi_{\rm LP}(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-\alpha - \beta \log\left(\frac{E}{E_0}\right)}$$

The spectral model used for each pixel is the one that matches the data closest, which is found through:

$$RSD_dof = RSD/dof$$

where
$$RSD = \sum \frac{(obs-fit)^2}{obs}$$
, dof=number of fit params

- The fit for each cell is used along with the effective area, energy dispersion of the telescope, the offset and livetime for the observations
- The effective area and energy dispersion can be found through the instrument response functions (IRFs) for various gamma-ray observatories

Counts – SNR G8.7-0.1

HESS | 1804-216 | K. Feijen

HGPS excess counts map: Aharonian et al, 2006: https://arxiv.org/abs/astro-ph/0510397

Leptonic Scenario

- PSR J1803-2137 is assumed as the accelerator of CRs for the leptonic scenario
- TeV gamma-ray efficiency for PSR J1803-2137 is $\eta_{\gamma} = \frac{L_{\gamma}}{\dot{E}} \sim 3\%$
 - Spin down power of the pulsar ($\dot{E} = 2.2 \times 10^{36} \text{erg s}^{-1}$) and luminosity of HESS J1804-216 at 3.8kpc ($L_{\gamma} = 7.09 \times 10^{34} \text{erg s}^{-1}$)
- \rightarrow Leptonic TeV gamma-ray emission is supported from an energetics point of view
- Assuming that only electrons are being accelerated by PSR J1803-2137, the three leptonic cooling times are calculated:
- $t_{diff} = 12$ kyr, $t_{brem} = 120$ kyr, $t_{IC} = 230$ kyr, $t_{sync} = 22$ kyr
 - At the assumed distance to PSR J1803-2137 ($d = 3.8 \text{kpc} \therefore v \sim 25 \text{km/s}$)
- Diffusion time (12 kyr) is similar to that of the pulsars age (16 kyr), hence electrons can diffuse the required distance of 30pc
- $age_{PSR} < t_{cool} \rightarrow$ energy losses from each effect are negligible
- Component C (corresponding to the distance of PSRJ1803-2137) shows gas structures which anti-correlate with the TeV emission from HESSJ1804-216, typical of a PWN driven TeV source

Summary

- Molecular clouds provide insight to the complex nature of gamma—ray sources
- Comparisons between gas and the TeV gamma-ray data allows us to, potentially, categorise the gamma-ray source
- Two solutions for HESS J1804-216 are currently investigated:
 - A completely hadronic source
 - A completely leptonic source
- Modelled CR proton spectra for the hadronic scenarios with SNR G8.7-0.1 and the progenitor SNR of PSR J1803-2137 to predict gamma-ray flux maps
 - These maps are used to predict what both HESS and CTA might see
- Leptonic scenario is not completely ruled out, with PSR J1803-2137 as the accelerator
- It is also possible to have a mixture of hadronic and leptonic, which will be investigated in time
- Future work therefore aims for detailed spectral model for the electrons

