

Lessons from FPGA-based trigger systems in VERITAS

Outline

- Introduction to VERITAS trigger system
- ANL/ISU L2 trigger system:
 - Features
 - Parasitic performance studies
- Implications and lessons for the future

VERITAS Trigger System

ANL/ISU L2 Trigger

ANL/ISU Trigger:Features

- Basic functionality:
 - Coincidence requirement: 3 contiguous pixels overlapping for η ns.
 - Programmable overlap width (η) + programmable CFD pulse width → gate width
 - Gate width range (current operating parameters) is effectively programmable between ~2ns and 13 ns

ANL/ISU Trigger: Special Features

- Notable features:
 - Individual, pixel-level controls (enable/disable)
 - Pixel-level (L1) rate monitoring
 - Adjustable internal delays (10ns range).
 - Timing can be brought into very tight alignment, allowing consideration of very narrow gate widths.
 - Parasitic installation (currently one telescope out of four)
 - Non-disruptive commissioning studies
 - Performance tuning
 - Extensible
 - Optical fiber outputs and FPGA resources permit these systems to feed an "L4" topological trigger of the type proposed for CTA

Timing Alignment

- Natural spread in timing: due both to signal paths within the FPGA and within the system as a whole.
- Internal delays permit a high level of compensation.
- Timing calibration easily done on all telescopes simultaneously.

Timing alignment distributions

Spatial distribution of the timing spread compensation

- Lab tests never quite drive the system the same way data does.
 - May not catch subtle non-uniformities
- Simulations rarely model trigger performance perfectly
 - Only as good as a) our trigger model b) our data model
 - Parasitic studies compare data to data: given a viable reference, tells us how the system responds to real events we actually care about.
 - Feedback: can tune trigger simulations more accurately based on parasitic data
- Non-disruptive nature of parasitic studies means studies easily cover a variety of sources and observing conditions.

- Overall efficiency loss
- Maps let us study potential non-uniformity/structure in trigger response
- Primary and parasite may be
 - Different triggers (as in commissioning period)
 - Two copies of the same trigger (performance tuning studies)
 - Reversed

Parasitic efficiency studies: virtue

- Non-disruptive to an operating instrument.
- Can perform studies with data otherwise only possible with simulations
- Comparison of two systems responding to identical set of events more effective in exposing subtle nonuniformities
 - Similar studies with independent datasets generally failed to reveal structure that the parasitic approach reveals easily.
- Pre-commissioning parasitic efficiency studies reliably predicted the new system's performance as a function of operating gate width above and below threshold (checked with postcommissioning Crab Nebula data)
- Studies ongoing.

Simple example: malfunctioning board

Parasitic array trigger "cell"

Array-cell level studies: possible w/parasitic testing model if we operate the prototype at the VERITAS site

- Parasitic systems ship "topological" trigger information to prototype
- Tagging information could allow matching of prototype and VERITAS datastream compare images? ~300µs readout
- Won't model a normal CTA cell—but could provide valuable information about an array trigger response to mixed-telescope and boundary cells. (Trigger pixels are of comparable size)

Parasitic testing modes

array trigger module L1.5 Tel. ... L1.5 L1.5 L4 L1.5 L1.5 L2 L3 L1.5 L5 L1.5 L1.5 L1.5 **Optimize** array Full-camera pattern trigger performance If operating telescope standalone, test calibration

- L1 Discriminator
- L1.5 Coincidence of discriminator bits
- L2 moments calculation
- L3 Data collector/t-corrections
- L4 Pattern/Multiplicity
- L5 Parallax of sub-array

pass-through (e.g. muons)

Food for thought

- Mechanical design of camera has implications for trigger uniformity.
 - No overlaps = small non-uniformities near threshold.
 - Smaller modules = bigger non-uniformities
 - Gamma-ray events only see impact near energy threshold.
 - For CR background: trigger threshold != energy threshold. Trigger threshold events influence background in VERITAS up to multi-TeV.
- Datastream design
 - What trigger information should we pass down the line to debug the decision process? Timing information?
- Parasitic capabilities could be used to
 - Study camera-level trigger algorithms with VERITAS
 - facilitate study of array trigger behavior in R&D phase (not part of MRI)
- Can (should?) we design parasitic capabilities into final system?
 - The SC-MST L1.5? L2? At array level?
- At array level, parasitic studies of a few trigger cells could be useful during commissioning
 - Provides feedback to simulations