SiPM Camera

Nepomuk Otte, GA Tech Vladimir Vassiliev, UCLA David Williams, UCSC

Why SiPMs?

PDE of SiPMs is **higher** than that of MAPMTs

Costs per area became competitive with MAPMTs

First G-APD Cherenkov Telescope FACT

http://cerncourier.com/cws/article/cern/47816

SiPM from Excelitas

Content from talk by Arthur Barlow @ Ringberg 2011

Nepomuk Otte

Georgia

4

MPPCs from Hamamatsu

Light concentrators not feasible -> we need maximum possible fill factor

Hamamatsu also works on more blue sensitive devices

SiPM require extra TLC

Varying ambient temperature

Changes breakdown voltage

Changes gain

Changes photon detection efficiency

Optical Crosstalk

Impacts trigger threshold Is <10% is what we need to aim at? Needs simulation studies (sumtrigger and clipping)

Larger devices -> slower pulses (not a general rule)

How slow before it cuts into telescope performance? Optimization of FE? Needs simulation studies

Temperature Stabilization

Advantages:

- Significant reduction in calibration effort (PDE, gain, ...)
- Reduction of systematic uncertainties
- Possibility to control SiPM intrinsic dark rate

more stable system

How stable is stable?

Depends on SiPM characteristics Assuming dM/M ~ 2% /°C -> requires dT < 0.5C

Condensation on entrance window?

Heat produced by Thermoelectric Element (TE)

A conservative estimate of TE waste heat:

Main contributor to heat flow into cold volume Camera electronics

Assuming 40 °C on electronics side, 0 °C on cold side, and 0.5 inch thick Delrin in between

-> Heat flow into cold volume: **4 W per 2 inch**²

Cooled away be TE with 40 °C on hot side of TE coupled to heat exchanger

-> Waste heat 15 W per 2 inch² (for TE-127-1.0-2.5 @ 9V operating at max COP, element size 30x30 mm²)

OS8: Schwarzschild-Couder Telescope

See memo"Optical Systems of Schwartzchild Telescope for CTA, Vladimir V. Vassiliev, Oct. 25, 2010

No camera: focal surface only

OS8: Schwarzschild-Couder Telescope: MAPMT camera

Center of photosensitive plane at focal surface Input window thickness: 2 mm refractive index: 1.5 Gap between window and photosensitive surface: 10.0 mm

OS8: Schwarzschild-Couder Telescope: MAPMT camera

Center of photosensitive plane at focal surface Input window thickness: 2 mm refractive index: 1.5 Gap between window and photosensitive surface: 20.0 mm

