GrOptics and CARE

Nepomuk Otte, Georgia Institute of Technology Charlie Duke, Grinnell College Akira Okumura, Nagoya University Heike Prokoph, DESY

GrOptics [1] Ray-Tracing Code for ACT-Telescope Arrays

Charlie Duke Grinnell College Akira Okumura Nagoya University

• Pure-Virtual Telescope Base Class with:

- grisudet-based ray tracing
- ROOT geometry libraries for photon shadowing
- Schwarzschild-Couder Telescope
 - Based on ROBAST [2] ray-tracing package: AGeoSphericDisk shape class plus ROOT geometry libraries

No intrinsic limit on number or type of telescopes ROOT output trees interface with CARE

[1] svn.slac.stanford.edu/nfs/slac/g/agis/repo/subversion/trunk/simulation/edu/GrOptics or contact Charlie Duke at duke@grinnell.edu

[2] arxiv.org/abs/1110.4448 and sourceforge.net/projects/robast

Schwarzschild-Couder Telescope: MAPMT camera

OS8: Schwarzschild-Couder Telescope

See memo"Optical Systems of Schwarzschild Telescope for CTA, Vladimir V. Vassiliev, Oct. 25, 2010

No camera: focal surface only

CARE: Camera and Readout

Resulted from a trigger simulation code for AGIS

Evolved into a fully fledged simulation package of ACT cameras including trigger and FADC

Output files: root, VBF

Main features for CTA-(US):

- Can do hybrid arrays
- >250 telescopes with less than 2GB memory (grid requirement)
- Proper SiPM simulation
- Sumtrigger with clipping
- No constraints on camera geometry
- Array trigger

CARE: Camera and Readout

Photon detectors: PMTs & SiPMs:

- Square, circular, hexagonal pixel shapes
- Uses measured or Gaussian pulse shapes
- Wavelength dependent QE
- Afterpulsing
- Single pe amplitude jitter
- Pixel to pixel variations of gain and QE
- Crosstalk
-

SiPM only:Correct simulation of

- dynamical behavior
- Optical crosstalk

- Trigger:
 - Constant fraction discriminator capabilities (delay, attenuation)
 - Next neighbor multiplicity requirement
 - Sumtrigger including clippling
 - Array trigger
 - •

FADC:

- Hi/lo gain
- QDC is an option
- •

Geometry: No constraints on camera topology or trigger topology

Status and next Steps

GrOptics code is up and running Commissioning of CARE after rewrite is complete (finally)

GrOptics and CARE are used by the VERITAS Collaboration

 \rightarrow Code validation on real data, results are trustworthy

We are setting up a repository for GrOptics and CARE that is accessible by everyone in CTA and VERITAS