Simulation Studies of CTA Reconstruction Performance

Matthew Wood

Jim Chiang

Stefan Funk

Tobias Jogler

Jon Dumm (UMN)

Scope of Study

- Evaluate performance of a CTA-like instrument using
 CORSIKA-generated gamma-ray showers (30 GeV 3 TeV)
- Idealized Detector Model allows telescope characteristics influencing array performance to be more easily disentangled
- Focus on 'contained' events and configurations that most closely correspond to the proposed designs for the Medium-Sized Telescope (MST)
 - Schwarzschild-Couder (SC-MST)
 - Davies-Cotton (DC-MST)
- Performance Metrics
 - Gamma-ray Angular Resolution 68% Containment Radius (R₆₈)
 - Energy Resolution
 - Point-Source Sensitivity (relative signal-to-noise) in backgrounddominated regime

Idealized Detector Model

- Array of 61 MSTs (10 m aperture)
- Constant Gaussian Optical PSF across FoV (no ray-tracing)
- Light losses modeled with standard QE and reflectivity
- Simplified Electronics Model
 - Infinite integration gate
 - Single PE Charge Resolution: $\sigma_q = 0.4$
 - Electronics Noise: $\sigma_{\rm b} = 0.1$
- Night-sky background photons with constant density across the FoV (100 PE/deg²)
- Trigger simulated with a threshold on true image amplitude (60 PE)

Gamma-ray Reconstruction

Reconstruction Parameters

- Trajectory Direction/Core Position
- Energy
- Interaction Depth
- Likelihood-based Reconstruction
 - Find the trajectory, energy, and interaction depth that maximize the likelihood for the image intensity in each pixel as computed from an image template model
 - Computationally slow but better performance than standard geometric reconstruction (Naurois et al. 2009)

Likelihood Reconstruction

- Library of image templates accumulated by averaging over many simulated showers
- Array log-likelihood computed by summation over image pixel log-likelihoods in each telescope

$$\begin{split} L_{\rm pix}(s,n|\mu(\pmb{\theta}),\mu_b,\sigma_b,\sigma_\gamma) &= \frac{(\mu+\mu_b)^n e^{-(\mu+\mu_b)}}{n!} g(s,n) \\ g(s,n) &= \frac{1}{\sqrt{2\pi} \left(\sigma_b^2 + n\sigma_\gamma^2\right)} \exp\left[-\frac{(s-n)^2}{2 \left(\sigma_b^2 + n\sigma_\gamma^2\right)}\right]. \end{split}$$

Maximize array likelihood in 6D space of reconstruction variables

Likelihood Reconstruction: Seeding

- Reconstruction seeded with MC values
- Insensitivity of likelihood
 reconstruction to parameter
 seeds was verified by randomizing
 seed values

Likelihood Reconstruction: Cleaning

 Likelihood reconstruction is only weakly dependent on f for f >0.6

32 40 48 56

24

Likelihood Reconstruction: Cleaning

Angular Resolution

Signal-to-Noise

Pixel Size/Optical PSF Studies

- Intrinsic transverse angular size of a Cherenkov shower is ~I arcminute – imaging resolution on this scale is needed for best reconstruction performance
- Need good PSF to realize full benefit of small pixels – ideally R_{pix} < R_{psf}
- Range of simulated pixel sizes and optical PSFs
 - D_{pix} = 0.02-0.18 deg
 - R₆₈ = 0.01-0.08 deg

Optical PSF

Optical PSF

$E = 100 \text{ GeV } \lambda = 0.5$

Pixel Size

SC-MST

DC-MST

Pixel Size/PSF: Angular Resolution

Pixel Size/PSF: Angular Resolution

Pixel Size/PSF: Sensitivity

Pixel Size/PSF: Energy Resolution

Pixel Size/PSF: NSB

E = 100 GeV Shower Image

Pixel Size/PSF: NSB

SC-MST ($R_{pix} = 0.06 \text{ deg } R_{68} = 0.02 \text{ deg}$)

DC-MST ($R_{pix} = 0.16 \text{ deg } R_{68} = 0.08 \text{ deg}$)

Smaller pixel size/PSF mitigates impact of NSB on reconstruction performance

Telescope Baseline

- A more densely packed array will generally have better reconstruction performance at the expense of collection area
- A natural scale for the baseline is ~120-140 m (~4 telescopes in Cherenkov light pool)

Telescope Baseline

Light Collection Area

Effective Light Collection Area

- Mirror Area
- Focal Plane Efficiency (deadspace, lightcones, etc.)
- Photosensor PDE
- All factors contributing to light collection are folded into a single efficiency scaling (1.0 = canonical 78.5 m² MST)

	Effective Area (250-700 nm) [m ²]	Scale Factor
DC-MST	16.2	1.45
Reference MST	11.2	1.0
SC-MST (ASTRI SiPM)	9.2	0.82
SC-MST (Hamamatsu MPPC)	8.3	0.74
SC-MST (MAPMT)	5.0	0.45

Light Collection Area: Angular Resolution

E = 316 GeV

Light Collection Area: Angular Resolution

Light Collection Area: Sensitivity

E = 316 GeV

Light Collection Area: Sensitivity

Geomagnetic Field

- All simulated performance shown thus far generated with B-Field switched off
- Influence of geomagnetic field is expected to degrade reconstruction performance for low energy showers
- Compare reconstruction performance for showers simulated with and without B-Field
 - Equatorial B-field configuration $|B| = 31.3 \ \mu T$
 - Analyze with image templates generated with and without B-Field

Geomagnetic Field

B-Field used for these studies: |B| = 31.3 μ T (B_x =27.5 μ T, B_z=-15.5 μ T)

Site	Latitude	Longitude	Altitude	Declination	Inclination	Horizontal	Vertical	Total
						Intensity	Intensity	Field
			[m]			$[\mu T]$	$[\mu T]$	[µ T]
ALMA	$22^\circ 59'56''S$	67°45'39"W	5000	- 4.7°	-20.22°	21.697	-7.991	23.121
H.E.S.S.	$23^{\circ}16'18"S$	$16^{\circ}30'00"E$	1800	-13.62°	-64.62°	12.190	-25.684	28.429
Salar de Pocitos	$24^\circ26'40''S$	67°06'10"W	3650	-4.72°	-22.37°	21.266	-8.860	23.038
(Argentina)								
El Leoncito	$31^{\circ}44'11''S$	69°16'39"W	2600	0.7°	-31.83°	20.179	-12.529	23.753
(Argentina)								
La Silla	$29^{\circ}15'00"s$	70°43'48"W	2400	0.7°	-28.57°	20.815	-11.336	23.702
(Chile)								
Beaufort West	$32^{\circ}28'48''S$	$22^{\circ}14'60''E$	1750	-24.07°	-65.38°	11.023	-24.065	26.469
(South Africa)								
La Palma	$28^{\circ}45'42"N$	17°53'26"W	2230	-6.55°	38.28°	30.388	23.987	38.714
VERITAS	31°41'18"N	$110^{\circ}53'00"W$	1270	10.42°	58.27°	24.915	40.299	47.379
San Pedro Martir	31°02'00"N	$115^{\circ}25'00"W$	2800	11.5°	56.07°	25.385	38.596	46.196
(Mexico)								
Sierra Negra	18°59'00"N	97°18'00"W	4000	4.75°	47.08°	27.768	29.868	40.782
(Mexico)								
Hanle	32°45'36"N	78°57'36"E	4515	1.55°	50.47°	31.853	38.604	50.049
(India)								
Oman A	23°6'00"N	57°31'5"E	2000	1.08°	35.37°	35.029	24.869	42.959

Geomagnetic Field: Angular Resolution

Geomagnetic Field

Background Rejection

- Likelihood model can also be used for background rejection by comparing log-likelihood with its expected value – "goodness of fit"
- Work currently underway to study background rejection as a function of pixel size, light collection, etc.

Naurois et al. 2009

Conclusions

- Image Resolution
 - A small pixel size in conjunction with good optical PSF ($R_{68} \le 0.02 \text{ deg}$) can improve angular resolution/pointsource sensitivity of a CTA-like array by as much as ~40-60%
 - An optical PSF of R_{68} = 0.02 deg (SC-MST PSF at ~3 deg) is sufficient to gain most of the improvement in angular resolution for R_{bix} ~ 0.06 deg
 - Improved image resolution reduces impact of NSB on reconstruction performance
 - Image resolution has minimal impact on energy resolution
- Light Collection Area
 - Imaging resolution is more important for angular resolution than light collection area at high energies (> 100 GeV) – SC-like configuration will have superior angular resolution to MST-like configuration regardless of light collection area of the respective telescopes
 - Light collection area becomes relevant below 100-200 GeV due to impact on trigger threshold
- Geomagnetic field
 - Strong influence on reconstruction performance below I TeV
 - Critical consideration for evaluating sites and studying array performance at low to intermediate energy

Future Work

- Study performance of likelihood analysis using image templates with viewing angle dependence
- Develop simplified version of read_hess (slim_read_cta) incorporating likelihood reconstruction and density-based image cleaners
- Explore background rejection and generate differential sensitivity curves for the configurations under study using both idealized detector and sim_telarray (i.e. Hybrid sims) simulation frameworks

Conclusions/Next Steps

Event Containment

