Simulation of a mixed array

Report on Hybrid-1 simulations: strategy, status and analysis

Guillaume DECERPRIT (ANL)

CTA-US meeting Feb. 2012

Ideas

- Simulation of a mixed array: Schwarzschild-Couder (SC) & Davies-Cotton (DC) telescopes.
- > Target energy range: 50 GeV 30 TeV

> GOAL:

- assess the general performances of a mixed array
- compare SC telescopes with DC telescopes
- > 1st: Trigger studies to setup trigger parameters
- > 2nd: Production of simtel files w/enough statistics
- > 3rd: **Analysis**: Eventdisplay etc.

Status

- > Trigger studies: done
- > Production: done
- > Checks: done
- > Analysis: ongoing
- > Sensitivity curve: coming very soon, next week or so
- > Comparison SC/DC

Optics: memo & what is simulated

> DC: cheap, easy alignment, better off-axis performances than other single-dish designs

- spherical-shaped (R = F) single-reflector, made of hundreds of spherical mirror tiles
- each tile points to a point 2F on the optical axis (F: focal of the system)
- for infinitesimal tiles, eliminates the spherical aberration
- simulated: intermediate design between DC and parabolic design to decrease optical time spread (see K. Bernloehr/G. Hughes, 2010): 12m-diameter dish with increased radius of curvature compared to DC design, focal length 16m, F/D

> SC: reduced aberrations and optical time spread, easily high FOV achieved

- aplanatic 2-reflector
- short focal length of the system
- smaller plate scale (0.067 deg/pixel)
- curved focal plane

Optics: memo & what is simulated

Parameter	DC
	(Intermediate design)
Focal length [m]	15.6
Aperture [m]	12.38
f/#	1.26
Projected area [m ²]	104
Design FoV [deg.]	8

Parameter \ OS Name	OS8
Focal Length [m]	5.5863
Aperture [m]	9.66
f/# [1]	f/0.5781
Primary Radius max [m]	4.8319
Primary Radius min [m]	2.1933
Secondary Radius max [m]	2.7083
Secondary Radius min [m]	0.3945
Effective light collecting area /unvignetted [m ²]	50.33
Unvignetted Size [deg]	3.50
Effective light collecting area at FoV edge [m ²]	47.73
Vignetting at the FoV edge [%]	-5.17
Primary projected area [m ²]	58.23
Secondary projected area [m ²]	22.55
Design FoV [deg]	8.00
Design FoV solid angle [deg ²]	50.35
PSF at the FoV edge (2MAX{RMS}) [arcmin]	3.81

Mirror reflectivity vs wavelength

Optics performances

- For DC/parabolic intermediate optics: spread~0.6ns for Offset = 4.0 deg
- SC optics: very small time spread, ~3x narrower than for DC optics

For SC optics: Time spread distribution for plane waves hitting the reflector at various angles

DC camera: 1897 pixels (Hamamatsu 9420), single-pe FHWM ~ 3ns, 5cm spacing, ~2.2m diameter, mean light cone efficiency ~85%, focal plane efficiency ~75%

SC camera: 11328 6mm squared pixel (MAPMT Hamamatsu 8500C), FHWM ~1ns, similar focal plane efficiency

> PMTs characteristics

AP rates: 2e⁻⁴ (DC) 1e⁻⁵ (SC)

Distribution of the amplitude of single-pe pulse

Trigger definition

- Trigger scheme: Goal is to limit accidental (NSB) rate and preserve sensitivity at low energies
- > Optimized parameters: *trigger threshold*, single-pe *pulse length*:

> DC:

- Majority trigger 3 pixels out of 7 must exceed a threshold, central pixel must fire
- 6ns coincidence window
- 5.5 PE threshold: ~2kHz single-telescope accidental rate

> SC:

- analog sum + majority trigger
- analog sum of 2x2 pixels cluster
- search for 3 connected cluster (each above a given threshold)
- 6ns coincidence window
- threshold 3.5 PE: ~3kHz accidental rate

- Individual accidental NSB rate (dark conditions):
- DC: 260 MHz
- SC: 13 MHz

Trigger studies: SC

- Very quick single-pe pulse of the H8500C
- > Pulse shape needed both for Trigger/DAQ

Effect of TARGET bandwidth: stretches the original pulse from 1 to 1.2ns

PMT: H8500C

50% efficiency of the trigger vs threshold

3 markers: 1, 3 and 10 kHz accidental single-Tel rate

Trigger studies: SC and DC

For Dark conditions

> Accidental rate must fall in the kHz regime

Trigger efficiency

> Comparison DC/SC

> A data set of gamma showers

- 0-700 m impact
- 100-10e3 GeV
- True size (all registered PEs) of triggered images
- > 50% efficiency of the trigger around 80 PEs (Reminder: SC pulse shaped to 3ns)

Readout window

Argonne

> Sampled signal is readout for each pixel:

What window size? (trade-off: data rate/disk space/loss of signal)

Analysis of the sims

- Sims available there:
 - DESY: <u>http://styx.ifh.de/HYBRID-1-sims/</u> (CTA uname/pwd)
 - SLAC: <u>http://srs.slac.stanford.edu/DataCatalog/</u> (account needed)
- > 10⁸ [10-30e³] GeV gammas, 10⁹ [30-100e³] GeV protons, E⁻² spectrum
- Nomenclature described on CTA wiki "Hybrid1"
 - http://www.cta-observatory.org/ctawpcwiki/index.php/Wp_mc_hybrid_config
- hessio format
- > Analysis
 - convertion to root format (also available on the repository) and moment analysis with eventdisplay (better reconstruction methods soon) (DESY)
 - read_hess
- > All the analyses are designed to assess and optimize the performances (plots of angular, energy resolutions and effective area/sensitivity)

Analysis of the sims

> Hillas style, with EventDisplay v400

- Reconstruction cuts/cleaning:
 - based on CTA simulations (array E)
 - telescope multiplicity (>1), image total size and number of fired tubes (>4), fraction of image lost out of the FOV etc.
 - rather loose cuts to keep flexibility, similar for DC and SC images
 - threshold/border cleaning
 - adapted for SC since NSB and size are different
- > Gamma/hadron separation:
 - theta2, MSCW
- > Effective areas: based on Mohanty et al. (1998)

What we want to assess performances

> Angular resolution

- for gammas from point source in the FOV center
- for gammas from diffuse sources
- Energy resolution
- > Effective areas
 - for gammas and protons
 - possibly helium, iron...
- Sensitivity curves
 - as soon as all effective areas are ready, sensitivity curves are immediate

What we want to assess performances

- I chose array E as a baseline
- ~same density + LSTs and SSTs though

> Angular resolution for gamma on source

Very preliminary, need to solve the bug that prevents me to have points below 5 TeV!

Angular Resolution 68%

Guillaume Decerprit

Mixed array perfs

Argonne

Energy resolution for gamma on source

Very preliminary, need to solve the bug that prevents me to have points below 5 TeV!

Hybrid1 status

> Sensitivity for gamma on Source

Very soon (protons jobs are currently running at DESY) Expect more within 1-2 weeks!

Pure-SC array perfs

Guillaume Decerprit

This plot was computed 10 hrs ago, can't figure out why I have only 3 points for the pure-DC array yet

- Note that the pure-DC array analysis is much more optimized than the pure SC array
- Room for maneuver for agressive optimization
- These preliminary results are promising

23

Pure-SC array perfs

Energy resolution for gamma on source

This plot was computed 10 hrs ago, can't figure out why I have only 3 points for the pure-DC array yet

- Note that the pure-DC array analysis is much more optimized than the pure SC array
- Room for maneuver for agressive optimization
- These preliminary results are promising

Argonne

- We have enough material to compare SC with DC in the core energy range (for low-energy range, more trigger optimization might be needed)
- > Ongoing work to optimize Reconstruction (cuts/cleaning)
- To optimize the array design itself, we might then need...
 - Trigger optimization with regards to new Trigger strategies (TrigSim etc.), SiPM simulations...
 - Toy Model of Slava Bugaev (Wash U.): compare different telescope baselines and pixel sizes (allows rapid testing / optimization of different layouts, pixel sizes, etc.)
 => also represents a sanity check with Hybrid-1

- First time we simulate mixed array of MSTs, some answers and general rules start to emerge
- Simulations and files are now complete and are available through http
- Simulations of a mixed array with completely non-optimized reconstruction show reasonable performances, close to std array E
- > We are now able to compare DC with SC with standard image rec.
- Next step: a fair comparison below 200-300 GeV might need some trigger optimization and image cleaning optimization
- > At the same time, we should switch to SiPM instead of MAPMT...
- It might make sense to use input from the Trigger specialists to setup the trigger schemes for this next round of sims (SumTrigger, OR trigger...)

BACKUP

NSB flux

For comparison: the accidental rate curves in Prod1 Credits: H. Prokoph

