SCT Proposal Status

Cta cherenkov telescope array

David Williams

Santa Cruz Institute for Particle Physics University of California Santa Cruz, CA, USA

SCT-WP Meeting SLAC February 24–25, 2012

R&D Proposal

- Positive recommendation from Astro2010 paved the way for (yet another) R&D proposal
- Joint to NSF (both PHY and AST) and DOE.
- SLAC internal review in May 2011 –> better proposal
- Submitted to NSF on July 5, 2011
- Submitted to DOE as a Field Work Proposal by SLAC July 19, 2011 and by Argonne shortly thereafter.
- No decision yet from either agency.
- Still our best understanding of the required scope of work

Overall Plan

- CTA base line for southern array: 4 LSTs, 23 MSTs, 50 80 SSTs.
- Increase MST array to 59 telescopes to realize its <u>full potential</u>.
- Provide important <u>additional science capabilities</u> through high-resolution imaging, wide FoV operation combined with 1 km² area.
- Boost the 23 MST array with 36 MSTs that provide a better performance and/or are more cost-effective.
- Develop the SC-telescope to demonstrate its cost and performance.
- Complementary R&D to existing CTA PP phase and participate in the construction of the CTA MST array.
- Construction of MST array of <u>either</u> SC- <u>or</u> DC-telescopes.
- Delivery of US MSTs starts later than the European telescopes.

What does this add to CTA?

- R&D provides the potential of a cost-effective, novel telescope that is inherently a high-resolution, wide-field-of-view instrument.
- The addition of 36 MSTs brings a factor of ~3 better flux sensitivity, a much improved angular resolution (more telescopes view the shower), larger collection area, and improves the wide field of view capabilities of CTA.
- Angular resolution: resolve emission regions and perform morphological studies of galactic sources, putative dark matter sources and unidentified sources.
- Wide field of view: to detect transients & to improve array reconstruction while maximizing collection area of array

The R&D Effort

- First 2 years: Develop SC design
 - Simulations to optimize and assess improvements to angular resolution, background rejection, sensitivity
 - Develop and evaluate technologies
 - Optimize cost and performance
 - Decision of whether to proceed with proof-of-principle telescope
- Second 2 years: Build proof-of-principle telescope
 - Complete mechanical structure
 - Fabrication of mandrels for mirrors, mirror panels and alignment system
 - Partially (~15%) populated camera
 - Full test of proof-of-principle system; design & performance report
 - Decision on telescope design for contribution to MST array
- Cost, procurement & construction plan for MST array based on SC or DC telescopes

R&D Proposal Budget

NSF MRI Proposal

- More constrained than a general proposal, but a different pot of money
 - Must build a scientific instrument
 - Strict 15-page limit
 - Cost sharing required for most institutions
 - Maximum \$4M request from NSF
- Substantial, but far from complete, overlap with R&D proposal
- Need to proceed to construction with best available information
- Optimizing design would come later
- Submitted to NSF on January 26, 2012
- Expected start date would be August 1, 2012

MRI Budget and Scope

INSTITUTION	Year 1	Year 2	Year 3	NSF Budget	Cost Sharing	TOTAL	Comment
University of California Los Angeles	788,000	255,000	34,375	1,077,375	548,068	1,625,443	
Georgia Institute of Technology	29,594	35,598	14,994	80,186	34,366	114,552	
Iowa State University	57,200	21,850	73,000	152,050	39,450	191,500	Additional cost-sharing provided by UCLA
Smithsonian Astrophysical Observatory	4,473	58,029	77,498	140,000	0	140,000	Cost Sharing provided by UCLA
Stanford University	54,030	131,649	27,296	212,975	91,275	304,250	
University of California Santa Cruz	53,663	54,551	56,368	164,582	70,535	235,117	
University of Chicago	212,000	235,000	0	447,000	190,949	637,949	Additional cost-sharing provided by UCLA
University of Iowa	0	25,571	23,500	49,071	21,031	70,102	
University of Utah	0	7,001	34,999	42,000	18,000	60,000	
Washingon University	52,500	47,600	33,600	133,700	57,300	191,000	
Barnard College	155,949	535,317	78,734	770,000	0	770,000	Exempt from the cost-sharing requirement
Columbia University	109,000	69,998	10,002	189,000	81,000	270,000	
University of Alabama in Huntsville	171,404	121,340	77,534	370,278	158,690	528,968	
TOTAL	1,687,813	1,598,504	541,900	3,828,217	1,310,664	5,138,881	

- Full mechanical structure and optical support system
- Full primary mirror
- One ring of secondary mirror
- One ~2.8° "subfield" of camera; 5x5 modules; SiPM photosensors

NSF-AST Portfolio Review

Summary of our response:

- New Worlds, New Horizons identifies very high-energy (VHE) gamma-ray observations as a critical capability for a balanced national program in astronomy and astrophysics.
- Research in gamma-ray astrophysics has close connections to observations across the full electromagnetic spectrum and to "multi-messenger" observations of neutrinos, cosmic charged particles and gravitational waves and therefore contributes to the vitality of astronomy and astrophysics in the U.S. as a whole.
- The Cherenkov Telescope Array (CTA) delivers VHE gamma-ray capability consistent with the New Worlds, New Horizons recommendations.
- NSF-Astronomy helped lay the foundation for current success in VHE gamma-ray astrophysics with its investment in VERITAS in response to the previous decadal survey, and New Worlds, New Horizions recommends continued support for this area.
- Although CTA is a large-scale project overall, the New Worlds, New Horizons recommended participation for NSF-Astronomy in CTA is medium-scale.
- The international partnerships formed on the basis of the New Worlds, New Horizons report should be fostered.

DOE R&D Jumpstart

- CTA-US visit to DOE January 12, 2012
- DOE requested a modest request for the highest priority aspects of the SCT R&D
- Budget request is \$1.05M compared to \$1.73M for R&D Phase 1
- Being requested as part of the annual SLAC and ANL lab budget process with DOE

	Mechanical	Electronics System	Management	Effort
	System (MS)	(ES)	Support	
Year 1	Develop conceptual design of the SC- telescope.	Develop a front-end readout design based on TARGET ASIC.		MS: 1 FTE at ANL for mechanical engineering. ES: 0.5 FTE at SLAC for electronics engineering.
Year 2	Deliver preliminary design & cost estimate for the SC-telescope. Review of telescope designs.	Test and evaluate ASIC and develop vertical integration including backplane and trigger. Review camera electronics.	Organize engineering review of SC- telescope concept and provide a WBS.	MS: 1 FTE for engineering. ES: 0.5 FTE (SLAC), 0.25 (WashU), 0.25 FTE (ISU) for ASIC, backplane & trigger (engineering and M&S).