MST Status And Plans

Including Drive And Safety Systems

Stefan Schlenstedt, DESY CTA-SCT Meeting SLAC, February 24, 2012

MST Requirements And Design Parameters

Agreements in meetings of WP TEL (2009-2010) \rightarrow Level A: Preliminary CTA System Requirements and Level B: Preliminary Sub-system Performance Requirements (Mar 27, 2011) \rightarrow Requirements review will evaluate if the performance requirements for the system and sub-systems are complete and adequate to define CTA at the corresponding level (Mar 27, 2012) \rightarrow CTA Requirements Level A, B, C...

- > Dish diameter 12m = 100m² mirror
- > Focal length F 16m
- > Dish curvature radius 19.2m (= 1.2×F)
- > Camera FoV: 7-8° = 2.5 tons
- > Angular pixel pitch: ~ 0.18°

MST Requirements/Specifications Cont'd

- > Mirror hexagonal, 1.2m, 35 kg/m²
- > Eigenfrequency 2.5Hz
- > Slewing speed 1min to any point in the sky
- > Positioning Range during Observation (technical tests)
 - Elevation: at least 25–91° (–95°)
 - Azimuth: at least ±270° from parking position
- > Precision of orientation of the telescope axis during astrophysical tracking < 1% of FoV on each axis = 5' for the MST</p>
- Environment: operating temperature, height, wind, seismic+lightning: -10...30°C, 1500...3800m, 50 (180) km/h, site dependent

MST Requirements Cont'd

- > Mechanics share to PSF <1mrad → 80% containment diameter of the optical PSF < pixel diameter out to 80% of the camera radius</p>
- > Displacement of camera 1/2 pixel
- > Focal plane positioning, i.e. movements
 - in z: ¹/₄ of a pixel diameter (that causes defocus)
 - in x, y: ≤ 5% of the FoV
- > Post-calibration pointing precision < 7" rms in space (5" in elevation and 5"/sin(elevation) in azimuth)
- > Availability: 80% of telescopes operational > 90% of the time and 90% of the telescopes must be operational in at least 80% of the time.
- Maintenance: < 3 person hours per telescope per week</p>

Lifetime ~30000 hrs = 13...30 years (depends on moon light operation)
Cta
Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 4

MST In Process

- > Structural design
- > Basic decisions
- > Analysis with many methods of
 - sub-assemblies
 - the telescope
- > Design of sub-assemblies
- Integration of sub-assemblies for collisions
- > Prototypes: drive system and quarter-dish
- > First MST prototype in 2012
- > Understand performance and improve design

Prepare production of MST series

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 6

Towards MST PBS

MST-SYS MST (team leader, systems engineer, QM, documentalist)

MST-STR	foundation, tower, head, yoke, dish, counterweight, catwalks, mirror support, quadrupod, integration, cabling, site
xST-AUX	drives, safety, lightning, (energy), (ACTL)
NECTAr-CAM	readout, triggers, mechanics incl modules, DAQ
Flash-CAM	readout, triggers, mechanics incl modules, DAQ
CAM-AUX	window, Winston cones, PMTs, HV, amplifiers, cooling, drainage, clock distribution, LV, cabling, monitoring, calibration, slow control, (ACTL)
MST-MIR	mirrors, triangles, mounting
MIR-AUX	(A)MC
Calibration Surveys	structure deformations, camera sag, mirror alignment, pointing

MST Prototype Site

MST-STR: Tower Foundation

MST-STR: Tower

DESY

DESY

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 10

MST-STR: Azimuth And Elevation

MST-STR: Head And Yoke

DFSY

MST-STR: Dish And Counterweight

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 13

MST-STR: Catwalks

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 14

aniet.

DESY

MST-STR: Mirror Support Tubes

Tested on Quarterdish

DESY

Deformation of structure under gravity and wind load

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 15

MST-STR: Quadrupod

- > K-structure to minimize displacement
- > Low tension tie-rods useful for natural frequencies

date: 23.01.2012

Summary - Around elvation axis

no.	parts	mass	Percentof total mass	distance	moment	Percent of total moment	remarks
		kg	%	m	kg m	%	
1	dish	35,066	46.5	0.259	9,082	6.6	including yoke
2	CW	13,682	18.1	-5.421	-74,170	-54.0	
3	dish + CW	48,748	64.7	-1.335	-65,088	-47.3	information for Vic
4	catwalk	2,000	2.7	0	0	0.0	estimated
5	head						not above elevation a.
6	camera	2,500	3.3	18.036	45,090	32.8	mass self defined
7	quadrupod	5,330	7.1	13.655	72,781	52.9	assumed as steel construction
8	mirrors etc.	5,143	6.8	2.044	10,512	7.6	incl. AMCs, triangles, bended tubes, clamps
9	subtotal	63,721	84.5	0.993	63,295	46.0	full but unbalanced system sum 1+2+4+6+7+8
10	CW change	11,676	15.5	-5.421	-63,295	-46.0	distance estimated like CW
11	CW total	25,358	33.6	-5.421	-137,466	-100.0	information
12	total	75,397	100.0		0	0.0	Sum 9 + 10

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 17

MST-STR: Alignment And Calibration

- > Front of the camera: dish deformation and mirror alignment
- > Centre of the dish: camera movement and mirror alignment
- > Edge of the dish: pointing

MST-STR: Continuous Integration Model In EDMS

EDMS-Element: CTA-MST-Prototype-jt-file, D00000001964041,B,1,6 (include the jt.-file 2012-01-27-CTA_telescope_prototype_D00000000843183.jt)

Last changes: Clamps and new benden tubes from Reiner Heller: Clamps + Bend Tubes Assembly, D0000002666111,A,1,2; clamps_and_tubes_20Jan20121.stp Catwalks from (12.2011) from Hartmut Luedecke: Catwalk Assembly, D0000002666021,A,1,2; file; catwalk_assembly_26Jan2012.stp

Not in 3D-Model: New dimensions of Quarupod-tubes (Victor, 5.5 and 4.5mm thicknmess for 170mm tubes and 140mm tubes). We are going to estimate then mass and COG!

Same Results from geometry-check: Catwalk fits. Rotation have to be checked.

Mirror-Position is ok. Hight of elevation axis: 9000mm above ground is ok. Hight to middle of azmimut -axis: 7600 is ok. Azimuth bearing: hight: 72mm is ok. Distance elevation-mirrors: 1686mm is ok! Distance elevation-axis-quadrupod connecting plates: 2284,429 (horitzontal) to define: Focal plane from dish (mirror-plane): 19070mm is defined. Camera center of gravity from focal plane: 280mm forseen => doesn't fit!

Feb 1, 2012

MST-STR: Continuous Integration Model In EDMS

Follow-up On Requirements And Specifications

- > LST proposal for precise definition of wind requirements:
 - constant wind measured at 10m height using 3 seconds averaging
 - constant + turbulent wind velocity model from Eurocode 1, part 4-1

> Earthquakes

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 |

MSR-STR: Prepare Survey Of Prototype

Nr	Aufgabe		
1	Befest. Ziele im Betonfundament		
2	Messung betonfundament		
3	Marken im Umfeld		
4	Messung: Einmessen in Landesnetz und Lage des Betonfundaments		
5	Oberer Ankerring		
6	Montage Turm, shimming		
7	Vermessung Lage d. Turms, u.a.unt. U. ob. Flansch, Neigung		
8	ob. Flansch Azimutlager, mit 360grd Drehung		
9	Mont. Head		
10	Messung :Form u. Lage d. heads,Lage d. Flansch,mehrere Azimut stellungen		
11	Ablage d. Azimutflansches aus der horizontalen		
12	Mess. D. Elevationflansche, Ablage v. Vertikale incl Bewegung der Elevation antriebe		
13	Mont. Yoke		
14	mont cw		
15	optional :Messung head		
16	Mont catwalks am dish		
17	opt.: Vermessung d. dishs vor der Montage m. mont. Rohren		
18	Mont. Dish		
19	opt: Vermessung des gesamten bislang mont Teleskops		
20	opt. : Einbau der catwalks		
21	opt:Vermessung Teleskop m.mont catwalks		
22	opt: Vermessung d. quadrupod v. d. montage (V.: Saclay)		
23	Montage quad	NI-	Aufacho
24	Montage zus. Cw Teile		Auiyabe Spiogolmontago
25	Verm. D Tel. m. quad, evtl vs az,elev.	33	Montago zus. Cw Toilo
26	Bestimmung der Lage d Achse d. dishs	34	wie 31 32
27	Montage der CCD cameras:im dish und pointing incl Just. D pointing cam.	30	We or $31,32$ Wiederholung Dos 35 nach n Monaton (n = 6, 12, 22)
28	evtl. Vermessung der position der Pointing camera	27	Messung m. CCD come
29	Kalibr. D. Teleskops, evtl. Kombiniert mit Vermessung, Winkelzuordnung intern zu astron. Koord	37	Fundament fuer lock
30	Montage camera dummy	30	Vermessung Lock Fundament und lock
31	Vermessung kompl. Tel., incl vs az.,elev.	39	vermessung Lock, i undament und lock
32	wie 31 aber abh. Von folg. Einfluessen: az, elev, wind, temp., zeit		

MST-STR: Drive System

- > Test-stand for programming and positioning
- > Plan for tests with the prototype
 - installation, cabling
 - slewing and tracking tests
 - precision, speed, oscillations, brakes, long-term reproducibility
 - safety tests stand-alone
 - malfunctioning h/w, rapid shutdown, simulated power outage
 - communication
 - access (e.g. remote, local, service)
 - operation (e.g. tracking, MoveTo, error)

DESY

Drive And Safety Concept For The MST

> Overview:

- > OPC-UA communication protocol
- > Structure of communication and list of variables:
 - Define access to the telescope
 - Execution of transmitted commands
 - Transmission of errors

34

Operating Zones And Positions

- Normal operating zone: all kind of motions (incl. tracking) are allowed
- > Parking zone: connects the 'start position' with the 'park position'
- End zone between 'normal operating zone' and 'mechanical limits'
 - motion is stopped here automatically
 - client can move an axis only back into the allowed zone

Operating Modes And Commands

- > Telescope has four operating modes
 - 1. Remote: initial mode that grants read-write access to 'remote client'
 - 2. Local: only read-access to system, can move axes with locally
 - 3. Automatic: PLC moves the telescope in case of critical errors
 - 4. Expert (override mode): e.g., deactivate limits, drives, ...
- > Commands in IDL (Interface Definition Language)
 - Initialization: error check, starts motors, moves to start position, ...
 - ParkPosition: moves telescope to its park position
 - MoveTo: moves telescope to a selected position
 - StopMoving: stops the motion of both axes (highest priority)
 - Tracking: 'Start Tracking' ... 'Push Track Points'...

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012

Implementation On Lab Prototypes

After connection of both test stands: Full test of the drive concept, safety aspects and communication

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012 | 2

First Implementation Of Tracking Algorithm

> Very good results (first test curve unrealistic)

- Code implementation in the PLC ongoing
- > Tests via OPC soon

Failure Modes Effects Analysis (FMEA)

- Severity from 'No effect' over 'Moderate' (loss of convenience functionality, e.g. external data communication) over 'Critical' (loss of primary function, i.e. telescope inoperable, e.g. no internal data communication) to 'Catastrophic' (Safety issue, e.g. telescope cannot be moved to a safe position or heavy environmental damage)
- > Occurrence [failures / year] from 'Remote' (<10⁻⁵, e.g. broken cable) over 'Moderate' (10⁻¹, e.g. power failure) to 'Very high' (>10³, e.g. ethernet packet collision)
- Detection (probability of a failure) from 'Certain' (tested permanently by at least 2 independent tools, e.g. el/az position or failure safety limit switches) over 'Moderate' (tested at least once a day, e.g. parking end switch) to 'Almost impossible' (cannot be detected or is not checked, e.g. something is hit)

Stefan Schlenstedt | MST | CTA-SCT, SLAC | Feb 24, 2012

FMEA Example

REF	FAILURE MODE	POTENTIAL EFFECTS OF FAILURE	POTENTIAL CAUSES OF FAILURE	CURRENT DESIGN CONTROLS OR DETECTION METHODS	POTENTIALLY CORRELATED BETWEEN TELESCOPES	SEVERITY RATING	PROBABILITY RATING	CORRELATION RATING	DETECTION RATING	RISK RATING
	POWER									
MST P1	Primary grid power supply failure	Telescope inoperative	1) Cable failure in telescope array	Signal from 230V voltage monitoring relay	Yes	g) 1	. 2	2 2	36
			2) Power failure in public supply network	Signal from 230V voltage monitoring relay	No				2 2	216
			contactor	monitoring relay						

No telescope movement to a safe position without an intervention of a local operator Statistical failure rate of a power failure in public grid: MTBF = 4.762a

Signal from the voltage monitoring relay is tested permanently

Changed ratings of a system/design with recommended actions:

REF	FAILURE MODE	POTENTIAL EFFECTS OF FAILURE	POTENTIAL CAUSES OF FAILURE	RECOMMENDED ACTION	ACTION TAKEN BY	SEVERITY RATING	PROBABILITY RATING	CORRELATION RATING	DETECTION RATING	RISK RATING
	POWER									
MST P1	Primary grid power	Telescope inoperative	1) Cable failure in	- Have secondary power supply (generator)		3	1	2	2 2	12
		inoperative	2) Power failure in public supply network	- Have secondary power supply (generator)		3	6	5 2	2	72
cta			B) Failure of mains	Have secondary power supply (generator)		3	2	1	. 2	24
			due to secondary	power supply		TA_SC	T SI A	C I Fe	h 24 0	20121

MST-CAM: NECTAr-CAM

DESY

mechanical structure	photodetection	digitization & trigger	Madrid meeting
-skeleton -connection to telescope -support of equipment	-light guides -photo-detectors -preamplifiers	-digitization -L0/L1/Interface to central trigger -electronic interface	S
calibration	data acquisition	environmental protection	services -power supply
-electronics -positioning		-sealing -temperature/humidity control	-cooling -lightning prot. -camera safety

- > mini-camera planned
- > Cooling ~3kW
- > Weight >2t with body, skin

cta

MST-CAM: NECTAr-CAM Mechanics Prototype

LLR

134.

43.3

43.3

MST-CAM: FlashCam

CTA Consortium Meeting, Madrid: FlashCam, a fully digital IACT camera system

Lu

Madrid

MST-MIR

- > Spherical mirrors F=16.07m
- > Hexagon flat-to-flat 1.20m
- > 84 mirrors
 - 84 dummy mirrors on prototype
 - 20+ prototype mirrors produced by CEA/ Kerdry, Brera/ Media Lario, ICRR/ Sanko
 - Brera: 1.13m, 2.5cm, 14.4kg
 - CEA: 1.20m, 8cm, 23kg
 - Sanco: 1.20m
 - Contacts with Galactica and EURO-COMPOSITES

MST-MIR Support

- > Tübingen and Zürich AMCs
- > Mirror triangles by Zürich

MST-STR: Procurement And Purchasing

- > Buildings permit: all documents ready
- > Site development prepared
- > Bearings, drives and most PLCs in house
- > Gears ready to order
- > Purchase department informed and ready to go
- > Foundation, dish+counterweight, yoke ready to tender
- > Quadrupod tendered and ready to order
- > Head and tower final touch on drawings and tender starts soon
- > CCD-cameras in house
- > Dummy camera tendered and partially ordered, final checks with quadrupod

MST Berlin Prototype

MST Berlin Prototype

