ISM Studies of TeV Gamma-Ray Sources (Update)

- Gal. Centre Region
- RX1713.7-3946
- Westerlund 1
- LMC SNRs.

<u>Gavin Rowell</u> (R. Blackwell, A. Curzons, C. Snoswell, F. Voisin) Uni. Adelaide

CTA-Oz Workshop 8 (Uni. Sydney) Apr. 2019

Some (potential) Cosmic-Ray and Electron Accelerators

Centre of our Milky Way

Super-massive black holes @ galaxy cores

Supernova remnants

Compact object mergers

'Star-sized' Black holes

Massive star

clusters

All are extreme environments!

Gamma Rays from multi-TeV particles

Protons: Gamma-rays and gas targets are generally spatially correlated (need to map atomic and molecular ISM \rightarrow mm radio astronomy)

Electrons: Gamma-ray (IC) + non-thermal X-ray, radio emission (synchrotron) highly coupled

Synergies with interstellar gas surveys

www.atnf.csiro.au/research/HI/sgps CO, NH₃, CS, SiO... HI (atomic H), OH, CS CO Gas density ~10¹ to 4 cm⁻³ ~10³ cm⁻³ >10^{3 to 4} cm⁻³ ATCA **Mopra Telescope** VANTEN なんてん電波天文台 CSIRO 国立天文台 National Astronomical Observatory of Japan Parkes CSIRO THz (Antarctica & High-alt) The HI/OH/Recombination [CI] + [CII]HOR GASKAP A THE MENT

Mopra CO Peak Intensity (Braiding etal 2018) @ 35 arc-sec beam

Data download https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/LH3BDN

Search for C⁺ in a young SNR

CR energy density > 1000x at Earth
 → CR ionisation rate possibly
 >100x galactic average

- SOFIA Observations 5hr
 In 2018 12 arc-sec res.
 (PI Rowell etal)
 - \rightarrow Compare C⁺ vs CO across SNR shell.

 → Compare to C⁺ across galaxy
 Herschel GOT C+
 (Pineda etal 2013, Langer et al 2014)

http://www.physics.adelaide.edu.au/astrophysics/MopraGam/ <u>Main ISM Tracers</u> CS(1-0), SiO(1-0), CH₃OH

<u>Targets</u>

Since 2012 observed over ~40 bright UnID TeV gamma and high energy sources (>1500 hrs)

 \rightarrow Determine distance to cloud components (often difficult with CO)

- \rightarrow Understand particle propagation
- \rightarrow Disentangle hadronic/leptonic components

Coverage is limited to discrete sources \rightarrow ATCA Systematic survey MALT45+

HESS Galactic Plane Survey (HGPS)

\rightarrow 78 sources (13 new sources)

Deil et al 2015, HESS 2018

Mopra Galactic Centre CO Survey – Rebecca Blackwell

Broadly Distributed Diffuse Emission

- Detailed structure and many expected features seen, at 0.5 arc-min resolution
- Separation of individual features matters to being able to consider specific clouds as targets for CR interaction

The HESS TeV Diffuse Galactic Ridge vs 12CO

Two panels from a series of unbiased integrated 12CO maps, overlaid with the contours of the HESS diffuse Galactic Ridge.

Maps were integrated over 20km/s, and then stepped through to find the best 'by eye' matches to the peaks of the gamma-ray emission, as a first look.

Between these two panels, in adjacent velocity ranges, some significant changes in gas morphology are already visible.

The HESS TeV Diffuse Galactic Ridge vs. 12CO

Another HESS Source near the GC – HESSJ1741-302

Part of the extended Mopra Central Molecular Zone CO survey region $(4^{\circ} > I > 358^{\circ}, +1^{\circ} > b > -1^{\circ})$ overlaps another interesting HESS sources near the Galactic Centre, HESS J1741-302. This source is a PeVatron candidate due to its hard spectrum at high energies, even though it is a faint source at only ~1% of the Crab flux.

HESS J1741-302

Young SNR : RXJ1713 TeV and ISM on Parsec Scales! <u>Mopra CO(1-0) Image + HESS > 2 TeV</u> contours

CR Diffusion Into Molecular Clouds e.g. Gabici etal 2007, Inoue etal 2012 **R** = distance CR travels into molecular cloud core 10 TeV proton 1 TeV proton R ~ sqrt[6 D(E_n, B) t] $D(E_P, B(r)) = \chi D_0 \left(\frac{E_P/\text{GeV}}{B/3\,\mu\text{G}}\right)^{0.5} \quad [\text{cm}^2\,\text{s}^{-1}],$ Crutcher 2010 $B \sim 10(n / 300 \text{ cm}^{-3})^{0.65} \mu\text{G}$ χ =diffusion suppression factor (~0.1) \rightarrow Low energy CRs can't reach cloud core. \rightarrow Harder TeV spectra from cores. \rightarrow Depends on B-turbulence (e.g. Morlino & Gabici 2015) \rightarrow **Don't expect electrons to penetrate!!** mol. cloud core (due to sync. Losses) → Hadronic 'reservoir'

 \rightarrow Need to map dense cloud cores ~1 arcmin or better

Hadronic Gamma-Rays from Clumpy ISM **SNR RXJ1713**

Inoue et al. 2012

Gabici & Aharonian 2014 (also Celli et al. 2018)

 $\eta = B^2/\delta B^2$

2D ISM/TeV Correlation and SED Modeling of RX1713

Andrew Curzons (MPhil project)

- Trying to understand what fraction of gamma-rays from RX J1713.7-3946 are hadronic and leptonic in origin. Diffusive shock acceleration theory suggests both should be present.
- Gamma-rays that are hadronic in nature or produced by electron
 Bremsstrahlung processes should spatially coincide with the ISM gas
- Inverse-Compton (leptonic) emission may generally anti-correlate with the ISM when synchrotron losses important.
- Compare the combined Mopra and SGPS ISM column density map with the HESS TeV gamma-ray map to produce a correlation coefficient over 2D.

Re-binning ISM Gas Data to HESS Resolution

- Each of the 29 regions from Tanaka et al. 2008
- (+ 4 more with sufficient pixels)
- Pixel size is 3.6' by 3.6'
- Removed pixels with gamma excess counts < 5
- Each region has up to 9 pixels

2D Map of Correlation Coefficients vs ISM

Colour scale represents the Pearson correlation coefficient

$$\rho = \frac{\operatorname{Cov}(x, y)}{\sigma_x \sigma_y}$$

 Black boxes indicate regions with a significant correlation coefficient according to a bootstrap method

2D Map of Correlation Coefficients vs TeV

Role of Bremsstrahlung and hadronic fraction

- Bremsstrahlung can contribute to the total leptonic spectrum based region-byregion SED modeling.
- In the blue (ISM correlated) regions Brem accounts for 6-26% of each region's TeV flux
- Assume remaining TeV flux from correlated regions (blue) is from hadronic interactions?

 → about 20% of SNR TeV emission is hadronic.
 (the SNR flux fraction in the blue regions minus Brem)
 Possibly lower limit?

Westerlund 1 – The Wolf-Rayet Haven Ohm etal 2009; HESS 2012

Galactic Latitude

Counts

HI bubble at -55 km/s Kothes & Dougherty (2007)

Galactic Longitude

Mopra 12CO(1-0) studies by Cameron Snoswell (MPhil)

Galactic Longitude

Galactic Longitude

- Fabien Voison, H. Sano, G. Rowell (in prep)
- LMC : perfect laboratory to study supernova remnants: > 20 SNRs.
- Powerful TeV gamma-ray emitters found in the LMC with HESS (Abramowski et al 2015)

MOTIVATION :

- Identify suitable targets among the LMC SNRs to be observed with CTA.
- → Good candidates to have molecular clumps resolvable by CTA.
- Model the Hadronic gamma-ray emission overlapping the molecular clouds

Example suitable target : N132D

- 2 molecular clouds located in the vicinity of the SNR resolvable by CTA
 5 = 4 6x1051 erg (Leaby et al 2017)
- E_{SNR}=4.6x10⁵¹ erg (Leahy et al 2017),
- Using diffusion coefficient at 10 GeV $D_{10}=10^{27} \text{ cm}^{-2}\text{s}^{-1} \rightarrow \text{modelled}$

gamma-ray emission matches the HESS TeV gamma-ray flux point, but below Fermi-LAT GeV emission by a factor of 2

MOTIVATION :

- Identify suitable targets among the LMC SNRs to be observed with CTA.
- → Good candidates to have molecular clumps resolvable by CTA.
- Model the Hadronic gamma-ray emission overlapping the molecular clouds

Example suitable target : N132D

- ~10 TeV gamma-ray emission inside reg A could be detected by CTA after ~150h observations → Impose constraints on the diffusion coefficient.
- Potential TeV gamma-ray detections offset from the SNR could then help confirm its hadronic origin.

Another interesting source : N103B

- 2 molecular clouds found near SNR
- Potential TeV gamma-ray detection after 150 hours observations towards region A if the diffusion coefficent at 10 GeV is D₁₀=10²⁶ cm⁻²s⁻¹ → slow diffusion

Thank you....

Radio Flux Difference?

We compare the observations for the blue regions to those of the red regions by calculating a tstatistic for the samples

We see a moderately significant difference between the ATCA radio flux (t = 2.60 and p-value = 0.015)

Expected? Simplistically, red regions are inv-Compton-dominant or synchrotron-poor.