The Interstellar Medium Towards the Unidentified γ–ray Source HESS J1804–216

Kirsty Feijen High Energy Astrophysics Group

THE UNIVERSITY of ADELAIDE

High Energy Stereoscopic System

4 x 12m diameter telescopes since 2003 I x 28m diameter telescope since 2012

HESS Galactic Plane Survey - 2018

HGPS map: HESS Collaboration at https://arxiv.org/pdf/1804.02432.pdf

Production of γ-rays

HADRONIC

• π_0 decay

LEPTONIC

Bremsstrahlung

Inverse Compton

Y (different energies)

Synchrotron Radiation

Molecular Clouds

- Clouds serve as a target for CR collisions
 - Dense regions of gas give information about γ–ray sources
- Important to understand the interstellar gas surrounding a source
- Different gas tracers include:
 - Carbon monoxide (CO)
 - Atomic hydrogen (HI)

3mm: ¹²**CO**, ¹³**CO**, C¹⁸O, C¹⁷O 7mm: CS, SiO, 12mm: NH₃

Parkes + ATCA = Southern Galactic Plane Survey (SGPS) of HI

HESS J1804-216

Top: TeVCat image of sources Right: Excess counts map from the HGPS 2005 scan in the region of HESS J1804-216

- The origin of high-energy CRs is a mystery
- γ–rays provide information on high energy astrophysical environments
- Studying various γ–ray sources helps us understand the extreme universe

- HESS J1804-216 is the focus of this talk
- FGES = Fermi Galactic Extended Sources
 - \rightarrow one of the Fermi catalogs

HESS J1804-216

- HESS J1804-216 is one of the most mysterious and brightest TeV γ-ray sources discovered
 - Flux of 25% of the Crab Nebula
 - γ -ray luminosity of $L_{\gamma} = 1.8 \times 10^{35} \mathrm{erg} \mathrm{s}^{-1}$
- One of the softest galactic sources due to its photon index of 2.69, with an unusually steep γ–ray spectrum

Local Region

 No objects coincide exactly with HESS J1804-216

SNR 8.3-0.1

- Size: 5' x 4'
- Distance: 16.3kpc

SNR G8.7-0.1

- Age: 15 kyr
- Radius: 26'
- Distance 4.5 kpc

I720MHZ OH Maser

Distance: 4.6 kpc

PSR J1803-2137

- Spin down power: $2.2 \times 10^{36} \mathrm{erg} \, \mathrm{s}^{-1}$
- Age: 16 kyr
- Distance: 3.8 kpc

PSR J1803-2137 born outside SNR G8.7-0.1, requires huge transverse velocity

- \rightarrow Likely moving towards the SNR rather than away from it
- \rightarrow Concluding that there is no connection between the two

Significance map: HESS Collaboration at https://arxiv.org/pdf/1804.02432.pdf

Top: Significance map from the 2018 HGPS

Galactic Rotation Curve

- Distances to sources not easily resolved
- Doppler shifting of spectral lines allows us to estimate these distances
- The Galactic Rotation curve is used to find the various distances related to objects in the local region of HESS J1804-216

Left: Galactic Rotation Curve model for HESS J1804-216

Spectra

- Region taken to encompass the 5σ level of HESS J1804-216 on the Mopra $^{\rm 12}{\rm CO}$ cube
 - Cube is Doppler-shifted velocity along the z-axis
 - This is used to create a spectrum
- The Mopra Galactic Plane CO survey data: ¹²CO and ¹³CO

Mopra Data – ${}^{12}CO(1-0)$

SGPS Data – HI

Total Column Density: $N(H) = N(HI) + 2N(H_2)$

Components of Most Interest

- PSR JI 803-2137 ~25km/s (component C)
- SNR G8.7-0.1
- ~35km/s and 1720MHZ OH maser 36km/s (component D)

- Older SNRs are believed to have a large enough hadronic (proton-proton) contribution to account for TeV γ–ray emission
- SNR G8.7-0.1 is assumed to be the accelerator of CRs for this scenario
- Hadronic scenario is feasible as the total energy budget of CRs is on the order of $10^{48} {\rm erg}$
 - SNR canonical energy budget ejected into CRs is 10⁵⁰ erg
- The cosmic ray enhancement factor (k) can be calculated through:

$$F(\ge E_{\gamma}) = 2.85 \times 10^{-13} E_{TeV}^{-1.6} \left(\frac{M_5}{d_{kpc}^2}\right) k \quad [\text{cm}^{-2}\text{s}^{-1}]$$

- Provided the γ -rays are produced via hadronic interactions between the SNR and surrounding dense gas:
 - SNR G8.7-0.1 (component D) requires a CR enhancement factor of 45 times that of the Earth-like CR density to produce the observed photon flux towards HESS J1804-216

Hadronic Scenario

- Cloud partially overlapping HESS source component D
 - At the assumed distance to SNR G8.7-0.1 (d = 4.5kpc $\therefore v \sim 35$ km/s)
- Assuming CRs have propagated a distance of 30pc from the accelerator to the cloud, the below diffusion coefficient is obtained:
 - $D = 9.06 \times 10^{27} \text{ cm}^2 \text{ s}^{-1}$ given $R = \sqrt{2Dt}$ (t=15kyrs, age of the SNR)
- CRs accelerated by SNR G8.7-0.1 undergo moderate diffusion to reach HESS J1804-216
 - Fast diffusion: $D = 10^{28} \text{ cm}^2 \text{s}^{-1}$, slow diffusion: $D = 10^{26} \text{ cm}^2 \text{s}^{-1}$

Hadronic Scenario

- CR enhancement factor of 45, distance to cloud is 30pc and moderate diffusion are all assumed for SNR G8.7-0.1
- Age of the source is between 10^3 yrs (LHS: curve I) and 10^5 yrs (RHS: curve 3)
- Consistent with the lack of X-rays, as a young source is not expected
 - Lack of X-ray emission suggests that the age is greater than the cooling time
- Hadronic scenario is feasible
- Plot below is for an impulsive accelerator ie an SNR

Leptonic Scenario

PSR J1803-2137 is assumed as the accelerator of CRs for the leptonic scenario

- Due to the high spin down power its plausible that emission is produced by high energy electrons as a pulsar wind nebula
- TeV γ–ray efficiency for PSR J1803-2137 is 3%:
 - Calculated from spin down power of the pulsar ($\dot{E} = 2.2 \times 10^{36} \text{erg s}^{-1}$) and luminosity of HESS J1804-216 ($L_{\nu} = 7.09 \times 10^{34} \text{erg s}^{-1}$)
- $\eta_{\nu} = L_{\nu}/\dot{E}$ 35 34 Leptonic TeV γ–ray -10 TeV emission is supported 33 007+7303 from an energetics point of view Log L, 1958+2846 32 31 Geminga ? 30 29 34 35 38 39 36 37 Log Edot PWNe plot: https://arxiv.org/abs/1305.2552

18

Leptonic Scenario

- The Chandra X-ray Observatory has detected a small, faint pulsar wind nebula (PWN) towards PSR J1803-2137
 - Size of 7"x4" (~0.02°x0.01°, for comparison to plot) for the inner PWN
- It is positioned perpendicular to the proper motion of PSR J1803-2137

Top: Smooth X-ray map of PSR J1803-2137 and its PWN Bottom: PSR 11803-2137 proper motion

 Small x-ray nebula and a large TeV nebula is consistent with a pulsar with a high-magnetic field

X-ray plot: https://arxiv.org/abs/astro-ph/0611599

Leptonic Scenario

Assuming that only electrons are being accelerated by PSR J1803-2137, the three leptonic cooling times are calculated:

• $t_{diff} = 12$ kyr, $t_{brem} = 120$ kyr, $t_{IC} = 2310$ kyr, $t_{sync} = 22$ kyr

• At the assumed distance to PSR J1803-2137 ($d = 3.8 \text{kpc} \div v \sim 25 \text{km/s}$)

- Diffusion time (12 kyr) is similar to that of the pulsars age (16 kyr), hence electrons can diffuse the required distance of 30pc
- $age_{PSR} < t_{cool} \rightarrow$ energy losses from each effect are negligible

Summary

- Molecular clouds provide insight to the complex nature of γ -ray sources
 - Analysis of ¹²CO and HI allows us to determine the morphology of the gas
- Comparisons between gas and the TeV γ–ray data allows us to, potentially, categorise the γ–ray source
- Two solutions for HESS J1804-216 are proposed:
 - A completely hadronic source
 - A completely leptonic source
- Both hadronic and leptonic scenarios are theoretically possible
 - HESS J1804-216 still remains unidentified in nature
- It is also possible to have a mixture of hadronic and leptonic, which will be investigated in time
- Next generation γ-ray telescopes (CTA) will be able to shed light on these unidentified sources

Mass calculations

- The column density is a useful parameter as it can help determine important gas parameters such as mass and density
- The mass is calculated through:
 - $M = \mu m_H NA$ Cross-sectional area Column density of given region

Mass of hydrogen atom

where $\mu=2$ for molecular hydrogen, $\mu=1$ for atomic hydrogen

The number density, n, can be calculated using the column density and volume of the gas column

- Characteristics can be analysed to provide a better look into the complex nature of the TeV emission
- This allows a limit to be placed on which scenario is powering the TeV source, HESS J1804-216