

cherenkov telescope array

The Transient Program of the Cherenkov Telescope Array

Daniela Hadasch on behalf of the CTA consortium ICRR, The University of Tokyo

- Introduction of the Cherenkov Telescope Array (CTA)
- Focus on Gamma ray bursts (GRBs), Gravitational waves (GWs) and high-energy neutrino studies with CTA
- Conclusions & Outlook

Two sites for all sky observatory

Roque de los Muchachos Observatory, La Palma, Spain

D. Hadasch

Paranal, Chile

Status of all sky observatory

Roque de los Muchachos Observatory, La Palma, Spain

Oct 2018: Inauguration of LST1

Paranal, Chile

December 2018: MoUs were signed

Improvement over existing experiments

- Energy range 20 GeV 300 TeV
- CTA-LST array crucial for improved sensitivity at low energies >20GeV
- ~10x more sensitive than current IACT
- Angular resolution improved by factor 2

Improvement over existing experiments

- Energy range 20 GeV 300 TeV
- CTA-LST array crucial for improved sensitivity at low energies >20GeV
- ~10x more sensitive than current IACT
- Angular resolution improved by factor 2

Combined MAGIC and LST1 Observations

(cta

Transients with CTA

Improvement on short time scales

- ~10000 better sensitivity for GRBs than
 Fermi-LAT (but 10% efficiency against ~90%)
- GRB Prompt emission and evolution of afterglow detectable with the fast rotation of the LSTs (20 sec)

GRBs with CTA: EBL studies

- Extragalactic Background Light: diffuse, nearly isotropic background of IR/opt/UV radiation
- Fundamental information on global evolution of stars & supermassive BH in the Universe
- GRBs observed with CTA are excellent EBL probes:

High-quality HE spectra

→ can trace photon-photon interaction
 attenuation feature that is an indirect EBL probe
 High-redshift GRBs can be detected
 → can probe early Universe complementary to

past studies (e.g. blazar at ~TeV up to z<0.9)

GRBs with CTA: LIV studies

- Some model of quantum gravity allow violation of Lorentz invariance
 - → the photon propagation speed can depend on energy
- All methods of constraint LIV require sources with:
 - Short time-scale variability
 - Bright VHE emission
- GRB observed with CTA can test LIV through high-resolution VHE light curves
 - Prompt phase
 - Afterglow (flares)

Simulated GRB 080916C based on Fermi/LAT spectra+EBL

Scientific, 10.1142/10986, arxiv:1709.07997

GRB with CTA: Expected rates and strategy

- **CTA will respond to external GRB alerts** from satellites (currently Fermi/GBM, Swift, SVOM, etc.) (12/yr/site follow-up expected during dark moon & z<70°)
- Real Time Analysis will check for GRB detection ~T_{slew}+30s
- Detection rate: ~ 1 GRB/yr/site; based on
 - 1. GRB population model tuned to match Swift observations
 - 2. Assumptions on VHE based on Fermi/LAT observations

Strategy	Expected event rate (yr ⁻¹)	Exposure per follow-up (h)	Exposure year (h y	r ⁻¹)	
Prompt follow-up of accessible alerts	~12	2	25	→ Real Time Analysis <30s	
Extended follow-up for detections	0.5–1.5	10–15	10–15	_	-
Late-time follow-up of HE GRBs not accessible promptly	~1	10	10		

Summary of GRB follow-up strategy per one site

(see Table 9.2 from "Science with CTA" Consortium paper, World Scientific, 10.1142/10986, arxiv:1709.07997)

Divergent pointing

- Telescopes are inclined into the outward direction by an angle increasing with the telescope distance from the array center \rightarrow Wider field of view
 - \rightarrow Possibility to detect GRB in the field of view \rightarrow observation from t_o
 - \rightarrow Boost rate of GRBs observable by CTA in prompt phase to ~2 per year.

GRB population study: POSyTIVE project

POpulation **Sy**nthesis **T**heory **I**ntegrated code for **V**ery high energy **E**mission

CLA

GRB population study: POSyTIVE project

POpulation **Sy**nthesis **T**heory **I**ntegrated code for **V**ery high energy **E**mission

CTA

Gravitational wave sources with CTA

- Expected large uncertainties of the GW source localization need **dedicated follow-up strategies**
 - CTA can play a relevant role in case of coarse GRB localization from high-energy satellites (as for GRB170817):
 - Fast reaction time (<20s)
 - Large field of view (4deg 7deg)
 - Arcmin level localization \rightarrow follow-up with optical/radio facilities

High energy neutrinos with CTA

- in preparalion for the cta
- Correlation of IC170922A with the flaring blazar TXS0506+056
 - → First hint for the success of VHE gamma-ray follow-up programs of highenergy neutrinos
- CTA NToO program defined by simulating source populations of joint neutrino and gamma-ray emitters and optimizing the simulated CTA follow-up.

Observation times for follow-up targets

- Defined in the Transients Key Science Projects
 - First estimate for observation time allocated by the CTA observatory
 - Adjustments and updates are currently being discussed

	Obser	Observation times (h yr $^{-1}$ site $^{-1}$)						
Priority	Target class	Early phase	Years 1–2	Years 3–10	Years 1–10			
1	GW transients	20	5	5				
2	HE neutrino transients	20	5	5				
3	Serendipitous VHE transients	100	25	25				
4	GRBs	50	50	50				
5	X-ray/optical/radio transients	50	10	10				
6	Galactic transients	150	30	0(?)				
	Total per site (h yr $^{-1}$ site $^{-1}$)	390	125	95				

Conclusion & Outlook

- CTA will provide: Low energy threshold, better sensitivity, all sky coverage
 - \rightarrow Increased transient sources detection rate
 - \rightarrow Broader & better energy spectra
- Real time analysis will be useful for scientific community
 - \rightarrow Sending automatic alerts through GCNs, for example
- Divergent pointing possible \rightarrow FoV increases from ~5 deg to ~20 deg
 - \rightarrow Possibility for detection of GRBs from t_o

Science

Cherenkov

Telescope

with the

Array

Thank you!

CTA synergies

14

15

CTA will be fully operative in the golden era of **multimessenger** astronomy and a fully mature era of **MW astronomy**

CTA Real-Time Analysis with **rapid communication** of some preliminary information is the key system

D. Hadasch

201	201	201	201	201	201	201	201	201	201	201	201
	CTA I	Prototypes	⇒			Science	Verification =	⇒ User Ope	ration		
ow Freq	uency Rad	dio									
LOFAR			_								
MWA			[MWA	(upgrade))					
(VLITE on J	VLA	>	• (~2018? LO	BO)						
lid-Hi Fr	equency F	Radio	\Box	FAST							
JVLA,	VLBA, eMer	lin, ATCA, EV	VN, JVN, KV	VN, VERA, L	BA, GBT(many other s	maller faciliti	es)			
ASKAI											
Kat7:	> MeerKAT	> SKA Phas	e 1								
oub)Milli	: motor Bod	lia]					1&2 (Lo/Mid	l)			
		T IDAM N	OFMA SM	A CMT CDT	Nonton2 M	i Noboro	. (mony	other smalle	: r facilities)		:
ALMA	LLANA, LN	11, IKANI, N	OEMA, SMI	A, 5141, 5F 1	, Namenz, M	opra, Nobeya	ma (many	other smalle	r facilities)		
	EHT	(protot	vpe -> full o	ons)							
					:	:	:	:	:	:	:
Optical T	ransient F	actories/T	ransient F	inders				1			-
iPaloma	r Transient	Factory	-> (~2017) Zwicky TF			ST (buildup to	o full survey	mode)		
PanST ²	KKS1 -> P	anSTARRS2	ckCEM (Mo	orlight single	dish prototy	no in 2016)					
		: Dia	:	:	dish prototy	:	;				
Optical/IF	Large Fa	cilities									
VLT, K	eck, GTC, G	emini, Magell	lan(many o	other smaller	facilities)			_			WFIPST
HST					JWST						GMT
					-			FIT (full on	anotion 2024)	& TMT (tim	cline less clear
-ray							e		eration 2024)	a INII (tim	enne less clear)
Swift (i	ncl. UV/optic	cal)									
NuSTA	v Chandra						INPE	1			
NUSTA	: (ASTROSAT					(IAIE				ATHENA
		:	: (HX)	мт							
				ER)	:	(XAI	RM			
				eRO	SITA						
Gamma-r	ay						SVOM (incl. soft gan	1ma-ray + op	tical ground	elements)
INTE	GRAL										
Fermi											
	HAWC)	:	:	: Gamma40
		DAMPE	2								(2025+)
Grav. Way	/es				LHAAS	<u>50</u>					
1	Advanc	ed LIGO + A	dvanced VI	RGO (2017)		(-upgrade	to include LI	GO India			Einstein T
					(KAC	RA					
Neutrinos						:	:	:	:	:	
	2	IceCu	be (SINCE 2	011)		Y KA CONT	TALADON	_	_		IceCube-Gen2
ANTARE			KM3NE	1-1		KM3NE	1-2 (ARCA)				
JHE Cos	nic Rays		:								
(Telescope A	rrav =	> upgrade	to TAx4						
-											

20

2

35

GRB detection with MAGIC and H.E.S.S.

2018

First hint of VHE emission from the short GRB 160821B@z=0.16 (Berti+2018, 15° Marcel Grossman meeting 2018)

- MAGIC follow-up of started at T0+24 s
- Hints of gamma-ray signal at >500 GeV found few hours after the burst

Jan 2019 First strong detection from long GRB 190114C@z=0.42 (Mirzoyan et al. 2019, Atel#12390)

- MAGIC follow-up of started at T0+50 s
- >20 sigma in the first 20 min for energies >300 GeV

May 2019 Long GRB 180720B@z=0.654 (Ruiz-Velasco, CTA Symposium 2019)

H.E.S.S. follow-up started ~10hr after the burst trigger

Aug 2019

Long GRB 190829A@z=0.0785 (de Naurois et al. 2019, GCN 25566)

- H.E.S.S. follow-up started at T0+4h20 and lasted 3.5h
- >5 sigma gamma-ray excess

Transient sources and CTA: synergies ('30s)

Will provide GRB alerts by '30s (still under evaluation at ESA, selection by 2021, launch by 2032)

3rd generation GW interferometers (>2030) expected to detect GWs for all detectable short GRBs (and possibly for a fraction of long GRBs)

Neutrino detectors major upgrades will be completed by that time

D. Hadasch

Transients with CTA

61

Off-Axis sensitivity

D. Hadasch

Angular resolution

