

cherenkov telescope array

The Cherenkov Telescope Array: an observatory perspective

Roberta Zanin Project Scientist CTA Observatory (Bologna - Italy)

CTA: the Cherenkov Telescope Array

Next generation ground-based gamma-ray observatory

- Science cases and design drivers
- Performances
- Observatory & operations
 - Operations in a MWL/MM era

Science cases and design

10^{-3} Detection threshold (ergs/cm²s) = 25 GeV Fermi LAT 10-4 sub-TeV •••• E = 40 GeV (prod3b-v1) E = 75 GeV **10**⁻⁵ E = 100 GeV 10-6 10 104 10-8 **10⁻⁹** СТА **10**⁻¹⁰ 10-11 **10**⁻¹² 1 min 10 min 1 hour 10⁻¹³ 10³ 10² 10⁴ 10 **Duration of flare (seconds)**

sub-TeV energies - Flare sensitivity

- Deepest sensitivity for • short timescale phenomena
- Time domain unexplored \rightarrow cosmological sources

cta

ormance/

TeV energies - Sensitivity (steady sources)

- Surveys & precision studies

cta

TeV/multi-TeV energies - Resolving power

Example: nearby active galaxy Centaurus A

Science cases and design

- Deepest sensitivity for
 short timescale phenomena •
- Time domain unexplored
 → cosmological sources

- deepest sensitivity ever
- arcmin angular resolution
- large FoV
- Surveys & precision studies
- Precision measurements in a still little explored energy range
 - 100 TeV range unexplored
- precision studies

-

Science cases

• Mainly CTA consortium involved in the definition of the science cases

(Science with CTA, CTA Consortium 2019 - https://doi.org/10.1142/10986)

Science cases

- The science case is stronger than ever
 - γ rays neutrinos correlation as proof for the mechanisms at work in the most violent explosions in our Universe
 - Detection/non-detection of the electromagnetic counterparts of the GW
 - Pulsars as a potential new population of TeV emitters

Science cases

• The science case is stronger than ever

- γ rays neutrinos correlation as proof for the mechanisms at work in the most violent explosions in our Universe
- Detection/non-detection of the electromagnetic counterparts of the GW
- Pulsars as a potential new population of TeV emitters

• The advent of the multi-messenger has enlarged the interest in the overall astronomical community on the VHE astrophysics

CTA Observatory

- The first ground-based gamma-ray observatory
 - serve large user community in an open and fair way
- 30 yr of lifetime
 - Significant effort for maintenance and operations costs optimization
- One legal entity: CTAO GmbH in the process to become an ERIC with HQ in Bologna (Italy)
- Two Telescope arrays, one Observatory
 - Inter-site coordination
 - Uniform approach to scientific ops
- The Science Data Mgmnt Center in Zeuthen (Germany)
 - CTA is a software instrument

CTA Observatory

CTA-North site

- 4 LSTs + 15 MSTs (baseline configuration)
 - Focus on sub-TeV and TeV energy range

CTA-North site

CTA-South site

• 4 LSTs + 25 MSTs + 70 SSTs (baseline-configuration)

- Site agreement signed in Dec 2018
- Aim to start with site infrastructure construction soon

- Phase-I: construction of a reduced-baseline configuration
 - a significant performance improvement wrt the currently running facilities
 - guarantees high-impact science covering most of the science cases
 - guarantees a significant increase of the discovery space
- Phase-II: operation of the phase-I configuration + construction towards the final baseline

A proposal-driven observatory

- Announcement of opportunity call every year
 - Proposal evaluation through a peer-review process
 - Each proposal is associated to one unique PI
 - After 1yr proprietary period data are open
 - Different data quality levels corresponding to distinct observing conditions
- Scientific proposals are classified in:
 - Regular PI proposals
 - Tens to hundreds of hours of observation
 - Key Science Projects: large observation programs (from hundreds to thousands hr) that need to be addressed in a coherent fashion generating legacy data sets for the community
 - 40% of observation time devoted to KSPs for the first 10 yr
 - Discretionary Director's Time (DDTs) proposals

Overview on Science Operation Processes

Data Flow & Analysis Categories

Three analysis categories

- Category A: at the sites, real-time, generate internal science alerts
- Category B: at the sites, offline (e.g. next day) → Higher sensitivity than category A
- Category C: offsite, final analysis results with maximum sensitivity

Science User Perspective

- Science User get access to the analysis results
 - on different timescales depending on the type of analysis
- Products and services are in the core of the CTA Science Platform
 - Access to results for PIs only via the CTA Science Platform

Crucial: MWL & MM links

Archive MWL data

- Catalogs for source associations
 - Radio, IR, optical, X-rays, gamma rays
 - State-of-art catalog of the currently running VHE facilities
- Radio surveys for the study of the diffuse emission
- Specific (non-flaring) source archival data
 - Crucial to disseminate our data in a standard format to favor the interoperability and MWL/MM analyses

MWL/MM observational campaigns

- MWL/MM campaigns are organized for
 - Typical timescales days to months
 - expected exceptional events (periodic sources, transitioning sources, long-duration flaring states)
 - correlation studies (i.e. giant pulses, FRB counterparts ..)
- They require fixed predefined timeslots
 - policy defined by previous agreements
- Constant communication between the involved facilities to react to possible failures of the partners (bad weathers, technical problems...)

Target of Opportunity Observations

• Monitoring ToOs

- Typical scheduling timescales days to weeks
- Monitoring can be performed
 - by different facilities (it requires previous agreements)
 - by a sub-array of CTA telescopes

Offline ToOs

- Typical scheduling timescales days to weeks
- Request to activate the corresponding proposal sent on day timescale by the PI to the CTAO, that schedules the observations off-site/off-line

Target of Opportunity Observations

- Externally generated real-time ToOs (GRBs, SGRs, Novae, AGNs...)
 - Automatic handling of alerts on ~second timescales
 - The alert system shall have a memory of the alerts during daytime
 - Alert priorization will be a must in the era of transient factories
- Internally generated real-time ToOs
 - Serendipitous detection in the FoV detected by the real-time analysis on ~minute timescales
 - Fast communication of the results to the other Observatories to enable follow-up observations
 - expected rate low, but identified events with high impact

CTA as a transient facility

- handling of any reaction to internal and external alerts by CTAO
 - All functions planned to be compatible with international standards to ensure interoperability

Synergies with other facilities

- MoU CTAO-SKAO about to be signed
 - Exchange of internal documents (data policies, architectures, ops concepts,...)
 - White paper CTA-SKA synergies
- MoU CTAO-EGO signed in 2016
- A series of white/yellow papers exploring the synergies with future observatories
 - Theseus
 - Athena

