Cosmic-Ray Models of the Ridge-Like Excess of Gamma Rays in the Galactic Centre

Chris Gordon

University of Canterbury

CG and O. Macias, Phys. Rev. D (2013)

O. Macias and CG, Phys. Rev. D (2014)

O. Macias, CG, R. Crocker, S. Profumo, MNRAS (2015)

Galactic Center Ridge

- Ridge seen in HESS TeV gamma-ray data.
- White contour lines indicate the density of molecular gas, traced by its CS emission.

Both a ridge and bulge component are needed to fit the excess.

Spectra

- Cosmic-ray models for the ridge: mainly pion decay (Crocker+2011) or mainly bremsstrahlung (Yusef-Zadeh+2012).
 See also Youst-Hull+2014.
- Proposals for bulge component: dark matter annihilation (Hooper&Goodenough, 2009), unresolved millisecond pulsars (MSPs) (Abazajian 2010), or DFGB error (Boyarsky+2011).

Overlay of two models

- Mainly bremsstrahlung model = solid lines
- Mainly Pion decay model = faint lines

Conclusions

- Fermi-LAT data has excess extended emission in the Galactic Centre.
- Both a Galactic bulge and ridge component appear to be present.
- The bulge component may be due to MSPs, an incorrect DFGB model, or possibly dark matter self-annihilation.
- The ridge component may be explained by cosmic rays interacting with the ISM.

Steady-State Model	<i>B</i> [μG]	Γ_{e}, Γ_{p}	Γ_{GSB}	Normalization of protons at 1 TeV $[cm^{-3} s^{-1} eV^{-1}]$	κ _{ep}	t _{esc} [years]	free-free flux density at 10 GHz [Jy]
Bremsstrahlung solution with $\overline{\langle n_H \rangle}$ fixed	130 ± 20	$2.34\substack{+0.06 \\ -0.07}$	0.7 ± 0.1	$(2\pm 1) \times 10^{-38}$	0.2 ± 0.1	$(9\pm6) imes10^4$	$320\!\pm\!20$
π^0 -solution with $\overline{\langle n_H \rangle}$ and $\kappa^{Bell}_{ m ep}$ fixed	490 ± 80	2.47 ± 0.02	0.6 ± 0.1	$(11\pm7) \times 10^{-38}$	0.004	$(3\pm2)\times10^4$	360 ± 20