CTA Linkages in Australia 28-29 November 2019, The University of Adelaide

Particle escape from middle-aged SNRs and related gamma-ray emission

Silvia Celli silvia.celli@roma1.infn.it

In collaboration with G. Morlino, S. Gabici & F. Aharonian

How do accelerated particles become CRs?

How do accelerated particles become CRs?

- Understand the current observations of **SNR spectra**;
- Unveil the presence of **PeV particle accelerators**;
- Connect the **CR spectrum** observed on Earth with the spectrum of particles released at the sources.

A **phenomenological** model to investigate the particle **escape** through spectral and morphological features of evolved SNRs in the HE and VHE domain.

Are SNRs proton PeVatrons?

Drury et al., A&A 287 (1994) 959

Tsuguya & Fumio, J. Phys. G 20 (1994) 477

Funk et al., ARNPS 65 (2015) 245F

Middle-aged SNRs (20000 yrs)

- hadronic emission
- steep spectra

Young SNRs (2000 yrs)

- hadronic/leptonic ?
- hard spectra

Very young SNRs (300 yrs)

- hadronic ?
- steep spectra E^{-2.3}
- E_{max =} 10 100 TeV

A population study of evolved SNRs

The hydrodynamical evolution of an SNR

 $M_{\rm ej} \gg rac{4}{3} \pi
ho R_s^3(t)$ \longrightarrow free expansion **II. Sedov-Taylor stage** $M_{\rm ej} \sim rac{4}{3} \pi
ho R_s^3(t)$ \longrightarrow energy conservation **III. Radiative stage**

→ momentum conservation

IV. Merging phase

pressure comparable to ISM

The hydrodynamical evolution of an SNR

Maximum energy in SNRs

Solution of the transport equation for accelerated protons

$$\frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f = \frac{p}{3} \frac{\partial f}{\partial p} \nabla \cdot \mathbf{v} + \nabla \cdot [D\nabla f]$$
ANALYTICAL
DESCRIPTION
Particles confined inside the SNR
$$\frac{\partial f_{\text{conf}}}{\partial t} + \mathbf{v} \cdot \nabla f_{\text{conf}} = \frac{p}{3} \frac{\partial f_{\text{conf}}}{\partial p} \nabla \cdot \mathbf{v}$$
Escaped particles
$$\frac{\partial f_{\text{esc}}}{\partial t} = \nabla \cdot [D\nabla f_{\text{esc}}]$$

Assumption 1: spherical symmetry f=f(t,r,p);

Assumption 2: stationary homogeneous diffusion coefficient is assumed inside and outside the remnant

$$D_{\rm in}(p) = D_{\rm out}(p) \equiv \chi D_{\rm Gal}(p) = \chi 10^{28} \left(\frac{pc}{10 \,{\rm GeV}}\right)^{1/3} {\rm cm}^2 \,{\rm s}^{-1}$$

Matching condition: $f_{esc}(r, t = t_{esc}) = f_{conf}(r, t_{esc})$

Assumption 3: at every time, a constant fraction ξ_{CR} of the shock ram pressure is converted into CR pressure, such that the acceleration spectrum reads as

$$f_{0}(t,p) = \underbrace{3\xi_{CR}\rho_{up}v_{s}^{2}(t)}_{4\pi c(m_{p}c)^{4-\alpha}\Lambda(p_{max}(t))} p^{-\alpha}\theta \left[p_{max}(t) - p\right]$$
acceleration
efficiency
normalization factor
such that
$$P_{CR} = \xi_{CR}\rho_{up}v_{s}^{2}(t)$$
Ptuskin & Zirakashvili, A&A 429 (2005) 755

Assumption 4: the shock is evolving through the ST phase

 $R_s(t) \propto t^{2/5}$ $v_s(t) \propto t^{-3/5}$

Assumption 5: the

maximum momentum at the shock is a decreasing function of time

$$p_{\max,0}(t) = p_{\mathrm{M}} \left(\frac{t}{t_{\mathrm{Sed}}}\right)^{-\delta}$$

Ptuskin & Zirakashvili, A&A 429 (2005) 755

$$\rightarrow t_{\rm esc}(p) = t_{\rm Sed} \left(\frac{p}{p_{\rm M}}\right)^{-1/\delta}$$

 $\begin{array}{l} \delta > 0 \\ \text{high-energy} \\ \text{particles} \\ \text{escape earlier} \end{array}$

Assumption 5: the

maximum momentum at the shock is a decreasing function of time

$$p_{\max,0}(t) = p_{\mathrm{M}} \left(\frac{t}{t_{\mathrm{Sed}}}\right)^{-\delta}$$

Ptuskin & Zirakashvili, A&A 429 (2005) 755

$$\rightarrow t_{\rm esc}(p) = t_{\rm Sed} \left(\frac{p}{p_{\rm M}}\right)^{-1/\delta}$$

 $\delta > 0$ high-energy particles escape earlier

- Magnetic field <u>not</u> amplified $p_{\rm max,0}(t) \propto t^{-1/5}$
- Magnetic field amplification driven by resonant waves $p_{\rm max,0}(t) \propto t^{-7/5}$
- Magnetic field amplification driven by non-resonant waves $p_{\rm max,0}(t) \propto t^{-2}$ $_{\rm 12}$

Density of non-confined particles

The spectrum of protons inside the SNR

The spectrum of protons outside the SNR

Volume integrated gamma-ray emission from hadronic interactions

Density profile of downstream medium

Sedov, New York Academic Press (1959)

Volume integrated gamma-ray emission from hadronic interactions

 $\delta = 3$

 $\delta = 4$

10⁵

10⁶

10⁴

$$f_0(p) \propto p^{-4}$$

 $T_{\rm SNR} = 1.5 \times 10^4 \,{\rm yr}, n_{\rm up} = 10 \,{\rm cm}^{-3}$
 $d = 1.5 \,{\rm kpc}, \xi_{\rm CR} = 2\%$
 $D(10 \,{\rm GeV}/c) = 10^{27} \,{\rm cm}^2 {\rm s}^{-1}$

$$f_0(p) \propto p^{-(4+1/3)}$$

$$T_{\rm SNR} = 3 \times 10^4 \,\text{yr}, n_{\rm up} = 10 \,\text{cm}^{-3}$$

$$d = 5.4 \,\text{kpc}, \xi_{\rm CR} = 12\% - 15\%$$

$$D(10 \,\text{GeV}/c) = 3 \times 10^{26} \,\text{cm}^2 \text{s}^{-1}$$

$$f_0(p) \propto p^{-4}$$

$$T_{\rm SNR} = 4 \times 10^4 \,\text{yr}, n_{\rm up} = 10 \,\text{cm}^{-3}$$

$$d = 2.0 \,\text{kpc}, \xi_{\rm CR} = 15\%$$

$$D(10 \,\text{GeV}/c) = 3 \times 10^{27} \,\text{cm}^2 \text{s}^{-1}$$

Suppression of diffusion coefficient required:

- local turbulence?
- CR-induced turbulence (streaming instability)?

Malkov et al., ApJ 768 (2013) 63

Nava et al., MNRAS 461 (2016) 3552N

D'Angelo et al., MNRAS 474 (2018) 1944D

How does turbulence evolve with time?

Needs to include damping effects (MHD cascade, ion-neutral friction).

Standard assumption in the SNR paradigm for the origin of GCRs.

Conclusions

- The escape process is a key feature of the theory of particle acceleration, that requires specific treatment;
- Reasonable arrangement of parameters can explain the steep spectra observed in the HE and VHE emission of several middleaged SNRs (IC 443, W 51C, W 28):

— constraints on escape from SNR population studies?

 Results obtained can be used in the future as a strategy to search for **PeVatrons**: TeV halos around SNRs observable with CTA?

CTA Linkages in Australia