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Compact binary mergers
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Stellar core collapse

Gravitational waves from
rapidly rotating cores?
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* Dynamical instabilities (shorter time scale)

. Secular instabilities (longer time scale) Fallback accretion? (Piro & Thrane, 2012)

* Magnetic distortion



Black hole mergers in AGN disks?

me

ck(xeff | d)

| Farr+ Nature 2017

|
hl‘

1}

GW150914
LVT151012
GW151226
GW170104

Bartos+ ApJ 2017

Stone+ MINRAS 2017
Bartos+ Nature Comm. 2017
Ford+ 2019



A Afterglow
(X-ray/Radio)
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EM follow-up is difficult

First NS-NS candidate during O3 already
detected.

Poor localization — Hanford was off.
No GRB / high-energy neutrino counterpart.

Dozens of observatories, 100s of observations
(>230 GCN circulars).

Extensive observation campaign only covered
~50% of volume.

Many false positives.

Galaxy targeted searches --- < 1% covered.
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Other candidates

Multiple black hole — black hole merger candidates.

First neutron star — black hole merger candidate.

Significant optical follow-up effort despite large distance.

Expected NS-BH merger rate is highly uncertain.

Threshold for announcement: few false alarms per year.
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Can CTA detect gravitational-wave sources?

v’ At least some short GRBs emit >GeV photons (GRB 090510).
v" Emission up to TeV (GRB 190114C; z=0.42).

v Cherenkov Telescope Array is sufficiently sensitive to quickly
detect high-energy gamma-rays from short GRBs (Bartos+ 2014)

* Relevant source distance: <500 Mpc (average; 700 Mpc max)
C Barsotti+ 2018
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How many CTA pointing will be needed? = cetecor
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Expected number of
LIGO+Virgo+CTA detections

LIGO A+ (325 Mpc range; Barsotti+ 2018), Virgo+
+ neglect LIGO/Virgo duty cycle

+ 100-4000 Gpc3 yr! NS-NS detections (Abbott+ 2018)
10 — 600 NS-NS merger detections / year

— for beaming with 8jer = 30°:2 — 80 detections / year
—~ for beaming with 6;e; = 10°: 0.2 — 10 detections / year
— for beaming with fjey =5° 0 — 2 detections / year

(NS merger rate estimate will quickly improve with O3)
CTA duty cycle will reduce these rates by a factor of ~5 — 10

Joint observations will probe off-axis TeV emission very quickly, with
the potential for quick discovery.




How much CTA time will this take?
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Do we need to wait until the array is complete?
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v’ Partially completed array may be sufficient.

v’ Divergent observing mode is interesting.
v" GWs tell us how far the event is --> we can choose observing modes based on this.
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grayitational waves

gravitational-wave follow-up strategies

1. Every GRB / NS-NS merger can be followed up,
even with partial CTA (it will not take much time).
Special BH-BH + NS-BH + unmodeled
events as well.

2. Receive GW trigger.

3. Narrow sky area given a coincident
GRB / high-energy neutrino.

4. Power-law fading of emission --- optimize
pointings to minimize slew time and cover
GW skymap (GW prob. density not useful)

5. Counterpart found:
a) Keep monitoring (rapid ID?)
b) Alert optical/X-ray follow-up observatories.



Conclusion

GW+CTA observations will connect high-energy emission with the
formation/evolution of the central engine.

Off-axis observations are critical to understand.

CTA will be able to rapidly scan even large LIGO-Virgo sky areas.
Rapid identification = alert/point optical follow-up observatories.
All NS-NS mergers can be followed up without needing to prioritize.

Other (BH-BH / BH-NS / subthreshold) sources will require
prioritization.

Even a partially completed array could be sufficient for detection.




