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How can CTA Perform Best in the Changing 

Gravitational-Wave Follow-Up Landscape?



multi-messenger emission



Bartos+ 2013

Compact binary mergers
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Stellar core collapse
Gravitational waves from 
rapidly rotating cores?

Differential rotation (e.g. Corvino+ 2010)

• Dynamical instabilities (shorter time scale)

• Secular instabilities (longer time scale)

• Magnetic distortion

Fallback accretion? (Piro & Thrane, 2012)



<1Myr

<10Myr

Farr+ Nature 2017

Bartos+ ApJ 2017
Stone+ MNRAS 2017
Bartos+ Nature Comm. 2017
Ford+ 2019

Black hole mergers in AGN disks?
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Fig. 5. Model schematics considered in this paper. In each panel, the eye indicates 
the line of sight to the observer. (A) A classical, on-axis, ultra-relativistic, weak short 
gamma-ray burst (sGRB). (B) A classical, slightly off-axis, ultra-relativistic, strong 
sGRB. (C) A wide-angle, mildly-relativistic, strong cocoon with a choked jet. (D) A 
wide-angle, mildly-relativistic, weak cocoon with a successful off-axis jet. 
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GW170817

an off-axis GRB

• First GW+high-energy discovery

Ø Already very informative

• Afterglow observations point to structured jet. 

(Margutti, Ghirlanda, Lazzati, Mooley, … )

Ø ~30% of GWs from BNS will have GRB counterpart.

Ø Significant fraction (10%) of GRBs should be nearby.

(Gupte & Bartos 2018)

• How does TeV emission look like at large viewing angles?

Ø Fermi-LAT did not detect this event.

Ø Can help differentiate between emission mechanisms.

Ø This will be central to whether CTA will see

LIGO/Virgo sources.

Margutti+ 2018

Kasliwal+ 2017



EM follow-up is difficult

Hosseinzadeh+ 2019

• First NS-NS candidate during O3 already 
detected.

• Poor localization – Hanford was off.

• No GRB / high-energy neutrino counterpart.

• Dozens of observatories, 100s of observations 
(>230 GCN circulars).

• Extensive observation campaign only covered 
~50% of volume.

• Many false positives.

• Galaxy targeted searches --- < 1% covered.



Other candidates

Hosseinzadeh+ 2019

• Multiple black hole – black hole merger candidates.

• First neutron star – black hole merger candidate.

• Significant optical follow-up effort despite large distance.

• Expected NS-BH merger rate is highly uncertain.

• Threshold for announcement: few false alarms per year.



Can CTA detect gravitational-wave sources?

ü At least some short GRBs emit >GeV photons (GRB 090510).

ü Emission up to TeV (GRB 190114C; z=0.42).

ü Cherenkov Telescope Array is sufficiently sensitive to quickly 

detect high-energy gamma-rays from short GRBs (Bartos+ 2014)

• Relevant source distance: < 500 Mpc (average; 700 Mpc max) 
c

Take: 
ü GRB 090510

ü 500 Mpc

ü Flux ∝ "#$.&'
ü exposure time  "()* = 10 s / continuous

ü /#0 spectrum, /12) = 1 TeV

Barsotti+ 2018

Fermi Observations of GRB 090510



How many CTA pointing will be needed?

Bartos+ MNRAS 2014

• LIGO/Virgo analysis delay: ~minute.

• We carried out NS-NS mergers simulations and localization.

ü LIGO+Virgo: 1-10 pointings.   (easy)

ü LIGO-only: 10-100 pointings. (some will be constraining for GRB 190114 / 103)



Expected number of

LIGO+Virgo+CTA detections

LIGO A+ (325 Mpc range; Barsotti+ 2018), Virgo+

+ neglect LIGO/Virgo duty cycle

+ 100-4000 Gpc-3 yr-1 NS-NS detections (Abbott+ 2018)

10 – 600 NS-NS merger detections / year

à for beaming with !"#$ = 30(: 2  – 80     detections / year

à for beaming with !"#$ = 10(: 0.2  – 10  detections / year

à for beaming with !"#$ = 5(: 0 – 2        detections / year

(NS merger rate estimate will quickly improve with O3)

CTA duty cycle will reduce these rates by a factor of ~5 − 10

Joint observations will probe off-axis TeV emission very quickly, with 

the potential for quick discovery.



How much CTA time will this take?

!"#$ = 10s
!)*"+,-.-/-0*~203

!)*"+~53
30s – 1500s for each event 

(take 300s average)
15% CTA duty cycle

à 10 minutes – 8 hours / year
of CTA time on NS-NS mergers 

Other sources?

• Black hole – black hole
• Range: ~2.5 Gpc with LIGO A+ (Barsotti+ 2018)
• Rate: 10 – 100 Gpc-3 yr-1 (Abbott+ 2018)

à detection rate: 600 – 6000  /  year.

à 10x more time would be needed than NS-NS…

• Neutron star – black hole:

• ?
• Sub-threshold events
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More time will be needed if observations start late



Do we need to wait until the array is complete?

ü Partially completed array may be sufficient.

ü Divergent observing mode is interesting.

ü GWs tell us how far the event is --> we can choose observing modes based on this.

(Sensitivity: Noethe+ 2017)



gravitational-wave follow-up strategies

1. Every GRB / NS-NS merger can be followed up, 
even with partial CTA (it will not take much time). 

Special BH-BH + NS-BH + unmodeled 
events as well.

2. Receive GW trigger.

3. Narrow sky area given a coincident
GRB / high-energy neutrino.

4. Power-law fading of emission --- optimize 
pointings to minimize slew time and cover 

GW skymap (GW prob. density not useful)

5. Counterpart found:
a) Keep monitoring (rapid ID?)
b) Alert optical/X-ray follow-up observatories.

gravitational waves

CTA gamma-ray
neutrinos

X-ray
optical

optical



Conclusion

• GW+CTA observations will connect high-energy emission with the 
formation/evolution of the central engine.

• Off-axis observations are critical to understand.
• CTA will be able to rapidly scan even large LIGO-Virgo sky areas.

• Rapid identification à alert/point optical follow-up observatories.
• All NS-NS mergers can be followed up without needing to prioritize.

• Other (BH-BH / BH-NS / subthreshold) sources will require 
prioritization.

• Even a partially completed array could be sufficient for detection.


