

Neutrino telescopes in the Mediterranean Sea: the present, the future

Maurizio Spurio Università di Bologna and INFN maurizio.spurio@unibo.it

Neutrino telescopes in the Mediterranean sea

- Very high **duty cycle** (~100%)
- Large observation **solid angle** (2π upgoing events, 4π in fiducial volume)
- Telescopes in water optimized for $E_{\rm v}{<}100~{\rm TeV}$
- v's not significantly absorbed by the Earth for E_v <100 TeV

- **Upgoing events**: O(0.1°) **angular resolution** for tracks; O(3°) for showers)
- **Complementary f.o.v.** for Mediterranean and South Pole detectors. Most of the Galactic plane seen as "upgoing events"
- Online analysis, fast response (few seconds), immediate alert
- Water is an homogeneous medium, but detectors need for positioning calibrations due to sea currents (offline analysis)

Two topology (track/showers) of events

Detection principle: Optical Cherenkov radiation

- 6 order of magnitude in energy (GeV-PeV)
- All flavour detection

Angular resolution: ~0.1° (full, E>10 TeV)

Energy resolution: <0.5 (log E_u)

Open questions for neutrino astrophysics

- Neutrino: fundamental probe to identify galactic and extragalactic CR sources
- Origin of IceCube HE astrophysical neutrinos
- Production sites of high energy cosmic particles
- Study of galactic and extra galactic propagation of CR with neutrinos as tracers
- Test the neutrino sector of the SM and BSM physics
- Galactic "TeV-PeVatrons": necessary a v telescope in the Northern hemisphere

Open questions for neutrino astrophysics

- Neutrino: fundamental probe to identify galactic and extragalactic CR sources
- Origin of IceCube HE astrophysical neutrinos
- Production sites of high energy cosmic particles
- Study of galactic and extra galactic propagation of CR with neutrinos as tracers
- Test the neutrino sector of the SM and BSM physics
- Galactic "TeV-PeVatrons": necessary a v telescope in the Northern hemisphere

Detecting cosmic neutrinos: a threefold way

 Excess of HE neutrinos over the background of atmospheric events. Estimate of the neutrino energy (shower-dominated). Mediterranean telescopes can confirm the diffuse flux

- Coincident event in a restricted time/direction windows with EM/γ/GW counterparts. Relaxed energy/direction measurement + transient/ multimessenger information. Mediterranean telescopes: real complementarity w.r.t. IceCube
- 3. Point-like events, excess in the sky map. Rely on the precision of the **neutrino direction (track-dominated)** and background suppression. Mediterranean telescopes have unsurpassable sensitivity for Galactic sources for E_v <100 TeV and part of the Southern sky

The ANTARES v telescope in numbers:

- Stable data taking since 2008 with high duty cycle (93-96%)
- Large field of view (2π instantaneously, upgoing)
- Quite good angular resolution: 0.3° -0.4° (median)
- But it is also small: $A^{eff} \approx 1m^2 @ 30 \text{ TeV} [O(12000) \text{ detected } v's]$

40

450 m

Interlink cables

-

km to

shore

nction

Box

- Real-time data processing
- Decommissioning: 2020

70 m

1st CTA symposium- M. Spurio

The future: KM3NeT

The future: KM3NeT

- **KM3NeT** is the neutrino research infrastructure in the deep Mediterranean Sea
 - Study of high neutrino sources in the Universe **ARCA** (off shore Capo Passero, It @ 3500 m depth)
 - Determine neutrino mass hierarchy ORCA (off shore Toulon, Fr @2500 m depth)
- Same collaboration, same technology, two installation sites
 Cities and Sites
 - 15 Countries
 - 55 Institutes
 - >240 Scientists
 - Number of Institutes and Scientists constantly increasing
 - Here, <u>A</u>RCA (<u>A</u>strophysics) features presented

of KM3NeT

10

KM3NeT: A Phased Approach

KM3Net

PHASE	BLOCKS	PRIMARY DELIVERABLES	FUNDS	
1	0.2	Proof of feasibility and first science results 24 ARCA strings + 6 ORCA	Fully funded	KM3NeT 2.0 ELter of Intent
2	2+1	All flavor neutrino physics and astronomy 2 x 115 ARCA strings 1 x 115 ORCA strings	Funding in progress	for ARCA and ORCA - Anroporticité & Ostilistion Resards with Comics in the Alyss - 2rth January 2016
3	6	Neutrino astronomy including Galactic sources	Not yet	

- **KM3NeT** Lol: *J. Phys. G*, **43** (2016) 084001
- H2020: funds to prepare the ERIC
- Since 2016 (2018) KM3NeT is back in the ESFRI (APPEC) roadmap
- The process to build the **KM3NeT** ERIC is in progress

The Detection Units (DUs)

ANTARES – Diffuse flux (Apjl 853, L7 (2018)

Sample:

- 2007 2015; livetime 2450 days
- All-flavour analysis (track+showers)

Event selection chain + energy-related cut applied to

- obtain a high-purity neutrino sample
- maximize sensitivity

Signal modeled according to the IceCube flux

Result:

33 events (19 tracks + 14 showers) in data
24 ±7 (stat.+syst.) events background in MC

 1.6σ excess, null cosmic rejected at 85% CL

CR propagation in the Milky Way: γ and $\nu.$

- Neutrinos allow testing **CRs propagation**
- Dense matter regions boost γ and v fluxes
- Models can be tuned to *γ* and CR observations
- Northern Hemisphere optimal point of view for galactic CR

ANTARES+ IceCube

ANTARES, PRDD96 (2017) 062001 ANTARES+IC, APJ 868 (2018), L20

Combined U.L. at 90% CL (blue line) on the 3-flavor neutrino flux of the KRA γ model (5-50 PeV cutoff)

Result: total flux contribution of **diffuse Galactic neutrino** emission <8.5% of the total diffuse IC astrophysical signal (E_v > 30 TeV) [ApJ 809:98(2015)]. Stacked expected signal vs. $\delta(top)$ and energy (bottom). Colors represents the relative contribution to the sensitivity

Why we do not have a "neutrino map"?

Why we do not have a "neutrino map"?

Limits and sensitivities

Note: these plots depend on the

- assumed **spectral index** of the source (here, α =2.0 is assumed)
- differential energy sensibility of the detector

Limits and sensitivities

<u>*Note*</u>: these plots depend on the

- assumed **spectral index** of the source (here, α =2.0 is assumed)
- differential energy sensibility of the detector

Detecting v: effective area + angular resolution \mathcal{V}

- 2π of the sky: upgoing neutrinos, almost 100% duty cycle;
- 4π of the sky: including semi-contained events, better energy determination
- Effective area A^{eff}= function[(t,s); ν energy; analysis cuts;δ]
- Angular resolution: O(0.1°) for upgoing tracks

1st CTA symposium- M. Spurio

Differential sensitivities: CTA and Neutrinos

22

Differential sensitivities: CTA and Neutrinos

ANTARES: Multi-messenger 🔊

APP35 (2012)530 JCAP02(2016)062

Radio	Optical	X-ray	GeV γ-rays	TeV γ-rays		
EM frequency/γ energy						
MWA	TAROT, ZADKO	Swift	Fermi	HESS		
	MASTER, GWAC	INTEGRAL		HAWC		

ANTARES real time alerts:

- Time to send an alert: ~5 s
- Track median angular resolution: 0.5°
- Doublet of neutrinos: ~0.04 events/yr
- Single neutrino with direction close to local galaxies: ~1 TeV, ~10 events/ yr
- Single HE neutrinos: ~5 TeV, 20 ev/ yr
- Single VHE neutrinos: ~30 TeV, ~3-4 ev/yr

- 277 to robotic telescopes
- +15 to Swift
- +8 to INTEGRAL
- +22 to MWA (radio)
 - to HESS

ANTARES multimessenger and transients

Object(s)	Messenger	Telescope	
Flaring Blazars	γ-rays	FERMI/LAT	
Flaring X-ray binaries	X & γ-rays	Swift, MAXI, RXTE/ASM, Fermi/LAT	
Flares from Mrk 421 and Mrk 501	γ-rays (TeV)	HAWC	
HAWC 2-year catalog	γ-rays (TeV)	HAWC	
Gamma Ray Bursts	γ-rays	Swift, Fermi, GCN	
IceCube Events	ν	IceCube	
UHECR	CRs	Auger, TA	
Galactic Plane	CR & γ-rays	Fermi, Milagro	
Fast Radio Bursts	Radio	SUPERB@Parkes	
Fermi Bubbles	γ-rays	Fermi	
Galactic Plane	CRs	HAWC	
BH/NS mergers	Gravitational waves + EM + γ -rays+ ν	Ligo/Virgo (+ IceCube and Pierre Auger Observatory)	

ANTARES Performances: Online, no calibrated, reconstruction within 5 s, median angular resolution 0.4°.

ANTARES Performances: Online, no calibrated, reconstruction within 5 s, median angular resolution 0.4°.

KM3NeT

ANTARES Performances: Online, no calibrated, reconstruction within 5 s, median angular resolution 0.4°.

Time and charge of all PMTs over threshold to the computer farm (100 km away)

> Data filter

ANTARES Performances: Online, no calibrated, reconstruction within 5 s, median angular resolution 0.4°.

Time and charge of all PMTs over threshold to the computer farm (100 km away)

> Data filter

Summary and Perspectives

- v astronomy is on its way to increased sensitivity and full sky coverage
- \mathbf{v} are an indispensable ingredient of multi-messenger astronomy
- v telescopes: opportunities for precision measurements in v physics
- ANTARES: more than 10 years of continuous data taking!
- ANTARES data taking continues up to the end of GW O3

 then, pass the baton to KM3NeT
- ANTARES results from various searches of astrophysical v emission.
 - (point-like, diffuse, extended regions, dark matter, ...)
- ANTARES active multi-messenger program:
 - Neutrino alerts distribution, participation to GCN and AMON
 - External alerts reception, prompt analysis
 - Offline multi-messenger analysis.
 - Combined analyses with IceCube (point sources, galactic plane, ...).
- Best practice and multi-messenger collaborations ported to KM3NeT!

KM3NeT- DU deployment

