Event Horizon Telescope

Maciek Wielgus

Black Hole Initiative, Harvard University Smithsonian Astrophysical Observatory

Event Horizon Telescope

CTA Symposium, Bologna 9 May 2019

2009 decadal review white paper

Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole

A Science White Paper to the Decadal Review Committee

Authors:

Sheperd Doeleman (MIT Haystack Observatory) Eric Agol (U. Washington) Don Backer (UC Berkeley) Fred Baganoff (MIT) Geoffrey C. Bower (UC Berkeley) Avery Broderick (CITA) Andrew Fabian (U. Cambridge) Vincent Fish (MIT Haystack Observatory) Charles Gammie (U. Illinois Urbana-Champaign) Paul Ho (ASIAA) Mareki Honma (NAOJ) Thomas Krichbaum (MPIfR) Avi Loeb (Harvard-Smithsonian CfA) Dan Marrone (NRAO/U. Chicago) Mark Reid (Harvard-Smithsonian CfA) Alan Rogers (MIT Haystack Observatory) Irwin Shapiro (Harvard-Smithsonian CfA) Peter Strittmatter (U. Arizona Steward Observatory) Remo Tilanus (JCMT) Jonathan Weintroub (Harvard-Smithsonian CfA) Alan Whitney (MIT Haystack Observatory) Melvyn Wright (UC Berkeley) Lucy Ziurys (U. Arizona Steward Observatory)

2009 decadal review white paper

Imaging an Event Horizon: submm-VLBI of a Super Massive Black Hole

A Science White Paper to the Decadal Review Committee

Summary:

"Over the next decade, existing and planned mm/submm facilities can be combined into a high sensitivity, high angular resolution "Event Horizon Telescope", capable of imaging a black hole."

FRANKFURT AM MAIN

Max-Planck-Institut für Radioastronomie

Large Millimeter Telescope Alfonso Serrano

MIT HAYSTACK OBSERVATORY

Event Horizon Telescope: the Team

Nijmegen, Netherlands, November 2018

O over 200 scientists O contributors from 18 countries O over 60 institutions

Shadow imaging story

"It is conceptually interesting, if not astrophysically very important, to calculate the precise apparent shape of the black hole... Unfortunately, there seems to be no hope of observing this effect."

Bardeen 1973

Wikipedia

Shadow imaging story

Luminet 1978

Historia obrazów czarnej dziury

Luminet 1978

"Hence, there exists a realistic expectation of imaging the event horizon of a black hole within the next few years." Falcke+ 1999

Event Horizon Telescope

Historia obrazów czarnej dziury

Bronzwaer+ 2018

Very Long Baseline Interferometry

Very Long Baseline Interferometry

Very Long Baseline Interferometry

🙀 Earth diameter over 10 000 km

- 🔆 Earth diameter over 10 000 km
- Earth atmosphere transparent in 1mm / 200-300 GHz

- ጵ Earth diameter over 10 000 km
- 🙀 Earth atmosphere transparent in 1mm / 200-300 GHz

 \Rightarrow max of the **synchrotron emission** in 1 mm

- ☆ Earth diameter over 10 000 km
- 🙀 Earth atmosphere transparent in 1mm / 200-300 GHz
- max of the **synchrotron emission** in 1 mm
- ☆ accretion flow transparent for 1mm wavelength

- ጵ Earth diameter over 10 000 km
- 🙀 Earth atmosphere transparent in 1mm / 200-300 GHz
- \Rightarrow max of the **synchrotron emission** in 1 mm
- ☆ accretion flow transparent for 1mm wavelength
- speed of electronics, HDD volume only recently became sufficient

- 🙀 Earth diameter over 10 000 km
- 🖈 Earth atmosphere transparent in 1mm / 200-300 GHz
- \Rightarrow max of the **synchrotron emission** in 1 mm
- ☆ accretion flow transparent for 1mm wavelength
- speed of electronics, HDD volume only recently became sufficient
- \Rightarrow shadow feature is **lensed** by a factor of about 250%

- 🙀 🙀 🙀 🙀 🙀 🙀 🙀 🙀
- 🙀 Earth atmosphere transparent in 1mm / 200-300 GHz
- max of the **synchrotron emission** in 1 mm
- ☆ accretion flow transparent for 1mm wavelength
- speed of electronics, HDD volume only recently became sufficient
- \Rightarrow shadow feature is **lensed** by a factor of about 250%
- \Rightarrow M87 central black hole is really humongous

Event Horizon Telescope

EHT 2019. Paper II. Instrument

Images and mass of M87

Spin of M87

It is the **BH angular momentum**, not the **disk angular momentum** that determines the image orientation

Spin of M87

It is the **BH angular momentum**, not the **disk angular momentum** that determines the image orientation

BH spin-away (clockwise rotation) is strongly favored

Variability of M87: images

3C279 images

Sgr A* in 2017 data

Sgr A* in 2017 data

Other potentially interesting sources observed in 2017

- ☆ Centaurus A (1 night)
- ☆ 3C279 (4 nights)
- ☆ OJ287 (2 nights)
- ☆ J1924 (5 nights)
- ☆ 3C273 (1 night)

Multiwavelength campaign in 2017: M87

Event Horizon Telescope

Multiwavelength campaign in 2017: Sgr A*

Event Horizon Telescope

Upgrades for 2020s

- \therefore more stations (+2 in 2020)
- ☆ increased bandwidth (to 128 GBps)
- x some more medium length baselines (~100 km)
- ☆ technical upgrades at telescopes (LMT)
- \approx low orbit space VLBI for fast aperture synthesis
- \Rightarrow small custom built radio telescopes
- ☆ MEO/GEO orbiter to increase the resolution

Astro2020 Science White Paper

Black Hole Physics on Horizon Scales

Thematic Areas:

Cosmology and Fundamental Physics, Formation and Evolution of Compact Objects, Galaxy Evolution, Multi-Messenger Astronomy and Astrophysics

Principal Author:

Name: Sheperd S. Doeleman, EHT Director Institution: Center for Astrophysics | Harvard and Smithsonian Email: sdoeleman@cfa.harvard.edu

Co-authors:

Kazunori Akiyama^{1,2,3}, Lindy Blackburn⁴, Katherine L. Bouman⁴, Geoffrey C. Bower⁵, Avery E. Broderick⁶, Andrew Chael^{4,7}, Vincent L. Fish², Michael D. Johnson^{4,7}, Thomas P. Krichbaum⁸, Colin J. Lonsdale², Daniel Palumbo^{4,7}, Dominic W. Pesce^{4,7}, Alexander W. Raymond^{4,7}, Jonathan Weintroub⁴, Maciek Wielgus^{4,7}

Astro2020 Science White Paper

Black Hole Physics on Horizon Scales

Thematic Areas:

Cosmology and Fundamental Physics, Formation and Evolution of Compact Objects, Galaxy Evolution, Multi-Messenger Astronomy and Astrophysics

Principal Author:

Name: Sheperd S. Doeleman, EHT Director Institution: Center for Astrophysics | Harvard and Smithsonian Email: sdoeleman@cfa.harvard.edu

"Over the coming year, the first EHT results will clarify the state of the art in black hole imaging on horizon scales, bringing into focus the full science potential of this new field. Expected enhancements to the EHT would enable time-resolved videos of black hole jet launching and accretion, with potential significant expansion of black hole physics in Sgr A*, M87 and other sources that require high angular resolution."