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The motivation for sub-milliarcsecond astronomy

Local planets  
~30arcsec

Sun, Moon  
~30arcmin

Largest stars  
~30mas

Typical bright stars  
~1mas
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Many stars only become resolved 
surfaces for baselines 100-1000m

Remember the interferometer is 
“blind” to any scale that does not have 

a baseline measurement
θ ~ λ/d

[m
as

]



A little theory
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An extended body of angular diameter θ consisting of many 
incoherently emitting sources produces a speckled pattern at the 
observer of typical size λ/θ 
  

A pair of observers separated by a distance ≪λ/θ are in the same 
speckle and ∴ see the same intensity fluctuations. 
  

Observers separated by ≫λ/θ are likely to be in different speckles 
and see fluctuations with less or no correlation. 
  

Measuring the scale at which the signals become de-correlated 
gives a measure of the angular size of the emission region.
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⟨I1(t)I2(t)⟩ = ⟨I1(t)⟩⟨I2(t)⟩(1 + |Γ12 |2 )

L d

θ

I1

I2

d

d ~ λ/θ
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Matthews, Kieda & LeBohec JMOp 65, 1336 (2018).

g(2)(0,0,0)g(
2)

g(1)(u, v,0) = ∫ ∫ I(l, m)e−2π(lu+mv)dldm

< I1I2 >
< I1 > < I2 >

= g(2)(u, v, t) = 1 + |g(1)(u, v, t) |2

g(2)(0,0,0) = 1 + 𝛆 ~ 1 + 10-4 -> small non-Gaussian fluctuations 
requires large photon statistics, i.e. large collecting surfaces

image size & 
brightness 
distribution

Second order time coherence g(2) & Fourier image plane

m
l

Van Cittert-Zernike Theorem

Intensity fluctuations lose the phase information, but this can 
be recovered / compensated for

• e.g. Cauchy-Riemann algorithm 
Nuñez et al. MNRAS (2012). 

• e.g. three point intensity 
correlations Nuñez & Domiciano 
de Souza MNRAS (2015).



A little history
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Narrabri Stellar Intensity 
Interferometer (NSII)
• 2x 6.5m dishes on a 188m diameter circular track 

• large mirror surface, with simple optics looks like an IACT. 

• Measured angular diameter of 32 stars -2 < mv < 3 

• Directly measured limb darkening of Sirius 

• Multiple stars & spectroscopic binaries (e.g. Spica/𝛂 Vir) 

• Emission line regions around a star (𝛄 Velorum)
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The Intensity Interferometer 
its applications to astronomy  

Hanbury Brown (1974)

Hanbury Brown, Davis & Allen MNRAS 167, 121 (1974)

Hanbury Brown, Davis Lake & Thompson MNRAS 167, 475 (1974)

Herbison-Evans, Hanbury Brown, Davis & Allen MNRAS 151, 161 (1971)

Herbison-Evans, Hanbury Brown, Davis & Allen MNRAS 148, 103 (1970)

* NB, also later used as a Cherenkov telescope, Grindlay et al. (1975).



A lot of science…
in a short space of time
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see also, e.g. 

Hanbury Brown (1974) 
Barbieri et al Astro2010 paper 61, arXiv:0903.0062 
Dravins et al NewAR 56, 143 (2012). 
Dravins et al APh 43, 331 (2013). 
Kieda et al Astro2020 paper ID 304 (2019).

• angular diameters 
• limb darkening 
• rapid rotators 
• binary systems 
• emission line regions 
• star spots 
• … 
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The first dimension — angular size of stars - uniform disc

Data from JMDC

Angular 
Size

Surface 
Features

• Constrain stellar evolution models 
• Also useful in determining size of transiting exo-planets

Asteroids

Lunar

The larger the baselines, the smaller the detail we can see
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The next dimension — limb darkening

• accurately constrain stellar evolution models 
in a model independent way 

• for <5% error can accurately determine size of 
transiting exo-planets

The longer the baselines, 
the more sensitive the 
observation… the more:

Hanbury Brown, Davis Lake & Thompson 
MNRAS 167, 475 (1974)

Larger baselines 
break the degeneracy
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with 2 telescopes…

with 6 telescopes…

See how the correlation changes 
with time (i.e. position angle to 

stellar axis)

start to build a picture

Altair w/ 18m baseline

The difference between the CHARA observation 
and the theoretical model “shows stronger 
darkening along the equator, inconsistent with 
a ny vo n Z e i p e l - l i ke g r av i t y d a r ke n i n g 
prescription assuming uniform rotation."With more telescopes we provide the data 

to fit a model to, rather than vice versa
CHARA Science 317, 5836 (2007)

Hanbury Brown (1974)

Rapidly rotating stars — distorted discs — gravitational darkening — e.g. Altair

get an impression

NSII CHARA

• Be star disk formation 
• winds from hot stars 
• Wolf-Rayet star environments 
• GRB pre-cursors 
• … 
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APh 43, 331 (2013).

A time averaged correlation provides some information, 
a time sequence or series of images provides more

Binary systems & star spots & accretion zones …

Remember, these are dynamic systems. So requirements are: 
‣ Many baselines of >100m 
‣ Many baselines measuring simultaneously 

for shorter observation times 



A little present
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Stellar intensity 
interferometery at 
VERITAS
• 4x 12m diameter telescopes, arranged on rectangular grid of ~100m 
• Equipped VERITAS for SII observations (augmentation funded by an NSF-AST RAPID 

grant) 
• beginning October 2018 (2 telescopes) 
• 3 telescope observations began in February 2019 
• measures photon intensity at each telescope with continuous digitization 

directly to disk (correlation is offline) 
• Goal: image ~30 nearby stars in U/V band 

• observe ±2 days from full moon (when gamma-ray observations not scheduled) 
• not a problem for bright (m<4) sources with suitable filters
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HV

Rotation Stage Optic Holder

200MHz 
preamp

PM
T

Kieda (2019)

veritas.sao.arizona.edu

http://veritas.sao.arizona.edu
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See poster on measuring 
star sizes from VERITAS 
observations of asteroid 
occultations

VTS SII

23
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45
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VERITAS baselines optimal to 0.66 < θ < 1.39 mas (for zenith pointing)



Saip

APOD  16

Tobs [h] θmeas [mas] cf θUD [mas]

𝛄 Ori 4.74 0.68 ± 0.06 0.701 ± 0.005

𝜿 Ori 5.13 0.48 ± 0.06 0.44 ± 0.03

• Data taken in 20m ‘runs’ 

• Streamed to disk (@250MS/s) 

• Correlated offline next day 

• next step, perform higher 
order correlations with more 
telescopes (phase recovery).

𝛄 Ori

𝜿 Ori

𝛄 Ori

𝜿 Ori

multiple points as 
apparent baseline 
changes as target 
moves across sky

[ 2J1(x)
x ]

2

x = πdθUD/λ

Richichi et al (2005)

First Observations/
Results

Matthews (2019)

2 telescope results



A big future…

# telescopes 2 5 15 25 50 100
# baselines 1 10 105 300 1225 4950

Npairs =
Ntel(Ntel − 1)

2

~km

With so many available baselines 
model independent imaging 
becomes a realistic possibility
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Giant 
Stars

resolving surfaces at 
<100 μarcseconds is 
an optical equivalent 

to VLBI!

CTA-N
CTA-S

Main 
Sequence 

Stars

CTA brings resolving power to the next level

Imaging:



More than one-dimension: imaging with optical aperture synthesis

Source tracks through the 
sky increasing number of 
available baselines.

Take a few 
telescopes

Sampling more of the 
F o u r i e r s p a t i a l 
distribution of the 
o b s e r v e d t a r g e t 
brightness.

But, II measures the 
square of the visibility, 
so phase information 
lost.  
However, there are 
ways to recover this.

• e.g. Cauchy-Riemann algorithm 
Nuñez et al. MNRAS (2012). 

• e.g. three point intensity 
correlations Nuñez & Domiciano 
de Souza MNRAS (2015).
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Simulation adapted from the friendlyVRI 
https://crpurcell.github.io/friendlyVRI/ 

8h observation with VERITAS for a <10mas giant “solar-like” star at 20° declination

prel
im

.

prel
im

.

NASA

Sol

3.5 mas

To do: 
• estimate noise 
• phase recovery 
• Get more telescopes

The VERITAS spacing is okay for large structure, but not for fine details

** FFT sampling effects only **

m
v<

6

https://crpurcell.github.io/friendlyVRI/
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2h observation with CTA-S SSTs for a <10mas giant “solar-like” star at -20° declination

prel
im

.

prel
im

.

NASA

Sol

3.5 mas

The VERITAS spacing is okay for large structure, but not for fine details

Simulation adapted from the friendlyVRI 
https://crpurcell.github.io/friendlyVRI/ 

to do: 
• estimate noise 
• phase recovery methods 

• e.g. Cauchy-Riemann 
algorithm Nuñez et al. MNRAS (2012). 

• e.g. three point intensity 
correlations Nuñez & Domiciano de 
Souza MNRAS (2015). 

** FFT sampling effects only **

m
v<

4

https://crpurcell.github.io/friendlyVRI/
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8h observation with VERITAS for a <1mas “solar-like” star at 20° declination

prel
im

.

prel
im

.

NASA

Sol

1mas

To do: 
• Get larger telescope separation 
• estimate noise 
• phase recovery

Remember the interferometer is 
“blind” to any scale that does not have 

a baseline measurement
Simulation adapted from the friendlyVRI 
https://crpurcell.github.io/friendlyVRI/ 

m
v<

6

https://crpurcell.github.io/friendlyVRI/
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8h observation with CTA-S MSTs for a <1mas “solar-like” star at -20° declination

prel
im

.

prel
im

.

NASA

Sol

1mas

** FFT sampling effects only **
Simulation adapted from the friendlyVRI 
https://crpurcell.github.io/friendlyVRI/ 

To do: 
• estimate noise 
• phase recovery methods

m
v<

6

CTA?

https://crpurcell.github.io/friendlyVRI/
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2h observation with CTA-S SSTs for a <1mas “solar-like” star at -20° declination

prel
im

.

prel
im

.

NASA

Sol

1mas

** FFT sampling effects only **
Simulation adapted from the friendlyVRI 
https://crpurcell.github.io/friendlyVRI/ 

To do: 
• estimate noise 
• phase recovery methods 
• Count the star spots

m
v<

3.
5

CTA?

https://crpurcell.github.io/friendlyVRI/
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Weigelt et al. ‘VLTI-AMBER velocity-resolved aperture 
synthesis imaging of η Carinae… Studies of the 
primary star wind and inner most wind-wind collision 
zone.’ 

 A&A 594, 106 (2016).

CTA resolution 
would be at scale 
of component stars

Remember these are never before achieved 
angular resolutions in the optical — we know that 
there are interesting things happening at these 
angular scales, but we can only predict some of 
what that might be…

η Carinae:  
massive star, colliding wind binary, 
core collapse supernova / GRB 
progenitor

NB, II signal/noise is independent of spectral bandpass. Same 
resolution can be achieved in spectral lines not just continuum. 
Different wavelengths probe different optical depths  

-> 3D imaging?



Come join the fun…
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CTA Science 
Working Groups

Galactic SWG Cosmic-ray 
SWG

Extragalactic 
SWG

Transient 
SWG

Dark Matter 
and exotic 

physics SWG

Intensity 
Interferometry 

SWG

Dave Kieda 
(coordinator) 

Nolan 
Matthews 
(deputy)

drop a mail to david.kieda@utah.edu 

for all your optical ideas, not solely II

mailto:david.kieda@utah.edu


Summary

 27

• Intensity Interferometry at sub-mas scale with IACTs has been achieved 
• clear signal on two stars (more to come) 
• it is an offline optical interferometer  

• can be scaled to arbitrary number of telescopes 
• simple to add new telescopes with commercial fibre optics 

• CTA has imaging capability to <100µas resolution for hot, bright stars 
• angular diameters 
• limb darkening 
• rapid rotators 
• binary systems 
• emission line regions 
• star spots 
• … 
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Backup
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Signal/Noise

(S/N)RMS = A ⋅ α ⋅ n ⋅ |γ12(d) |2 ⋅ Δf ⋅ T/2
mirror 
area photon 

detection 
efficiency

photons/m2/s/Hz

correlation
electronics 
bandwidth

observation 
time

Dish	
[m]

250	MHz 1	GHz

4 ~0.5 ~1

12 ~5 ~10

23 ~20 ~40

α = 0.35 
cf NSII

LeBohec & Holder ApJ 649, 399 (2006) 
|𝛄12|2=0.5 at 5σ to 14% accuracy in 5h for mv=6.7 

(3% for mv=5)
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NSII Starbase 23m 250MHz 23m 1GHz 12m 250MHz 12m 1GHz 4m 250MHz 4m 1GHz

|𝛾|=0.5

Sensitivity

single night
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SPIIFy 
Pilyavsky et al. MNRAS 467, 3048 (2017)

Dravins et al NewAR 56, 143 (2012). 
Dravins et al APh 43, 331 (2013).
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SPIIFy 
Pilyavsky et al. MNRAS 467, 3048 (2017)
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• Virtex-5 FPGA programmed to perform high-speed 
correlations of real-time/streamed data 
‣ Based on a multiply-accumulate algorithm 
‣ (Currently) performs correlation for 64 time-lag bins 

(-128 to +128ns in 4ns steps) 

• Allows for rapid processing of large data sets: 
‣ Single night of observations generates ~20TB 
‣ ~1:1 observation/computing time processing 

(allows data to be processed before the next night)
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• The desired spatial coherence signal appears at the 
correlator time-lag that is equal to the geometric 
optical path delay (OPD). 

• The OPD continuously changes on short time scales 
(~mins) by an amount > than the sampling time 
• Effect is signal moves across multiple time-lag bins 

• To account for this the correlator is read out at a ‘cycle’ 
rate (~1s) in which OPD change relative to sampling 
time is negligible 

• Software time correction applied aligning each 
correlator cycle output about known OPD for each 
respective cycle


