

cherenkov telescope array

Testing cosmology and fundamental physics with the Cherenkov Telescope Array

Manuel Meyer, J. Biteau, J. Lefaucheur, H. Martinez-Huerta, S. Pita, I. Vovk for the CTA Consortium May 9, 2019 CTA Symposium mameyer@stanford.edu

BERT STORES

Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Constraining the extragalactic background light (Cta

→ See talk by Marco Ajello

e⁺

YEBL

[e.g. Hauser & Dwek 2001; Dwek & Krennrich 2013; Ackermann et al. 2012, Abramowski et al. 2013, Biteau & Williams 2015; Ahnen et al. 2016; Abdalla et al. 2017; Abdollahi et al. 2018]

•

→ See talk by Marco Ajello

e⁺

YEBL

[e.g. Hauser & Dwek 2001; Dwek & Krennrich 2013; Ackermann et al. 2012, Abramowski et al. 2013, Biteau & Williams 2015; Ahnen et al. 2016; Abdalla et al. 2017; Abdollahi et al. 2018]

•

 $E_{\gamma} \gtrsim 210 \,\mathrm{GeV}\left(\frac{\lambda}{1\,\mu\mathrm{m}}\right)$

field

→ See talk by Rafael Alves Batista

YEBL

e⁺

[e.g. Hauser & Dwek 2001; Dwek & Krennrich 2013; Ackermann et al. 2012, Abramowski et al. 2013, Biteau & Williams 2015; Ahnen et al. 2016; Abdalla et al. 2017; Abdollahi et al. 2018]

•

 $E_{\gamma} \gtrsim 210 \,\mathrm{GeV}\left(\frac{\lambda}{1\,\mu\mathrm{m}}\right)$

$\phi_{\text{obs}} = \phi_{\text{emitted}} \exp\left(-\alpha \tau(E_0, z_0)\right)$

Constraining / detecting the intergalactic magnetic field

→ See talk by Rafael Alves Batista

∦EBL

•

УСМВ

Constraining / detecting the intergalactic magnetic field

→ See talk by Rafael Alves Batista

₿EBL

УСМВ

Searching for oscillations between gamma rays and axion-like particles

→ See also talk by Subir Sakar & Francesco Miniati

[Csaki et al. 2003; Östman & Mörtsell 2005; Hooper & Serpico 2007; Mirizzi et al 2007; Hochmuth & Sigl 2007; De Angelis et al. 2008; Wouters & Brun 2012,2013; Abramowski et al. 2013; Ajello et al. 2016; Montanino et al. 2017; Liang et al. 2018; Malyshev et al. 2018; Majumdar et al. 2018; Xia et al. 2018; Zhang et al. 2018] YEBL

XCMB

Photon-ALP oscillations could lead to a reduced gamma-ray opacity or oscillation features in gamma-ray spectra

Searching for signatures of Lorentz invariance violation

→ See talk by John Ellis, Subir Sakar

YEBL

Хсмв

LIV modifies dispersion relation of photon (subluminal case):

[e.g. Kifune 1999; Jacob & Piran 2008; Abdalla & Böttcher 2018; Lorentz & Brun (H.E.S.S.) 2016]

•

Which modifies the energy threshold for pair production

The Cherenkov Telescope Array

Designed to detect Cherenkov light from y rays with energies between 20 GeV and 300 TeV
Factor ~10 improvement in point source sensitivity compared to current generation imaging air
Cherenkov telescopes + improvement of spectral and spatial resolution
Full sky coverage through two arrays in northern (La Palma, Spain) and southern hemisphere
(Paranal, Chile)

	No. North	No. South	Energy Range (TeV)
Large Sized Telescopes	4	4	0.02-0.2
Mid Sized Telescopes	15	25	0.1-10
Small Sized Telescopes		70	5-300

https://www.cta-observatory.org/

The Cherenkov Telescope Array

https://www.cta-observatory.org/

Probing the effects: simulations and method

- CTA simulations carried out with ctools and gammapy
- Maximum likelihood estimation used to determine source spectral parameters and parameter in question
- Likelihoods combined if multiple sources considered (e.g. for EBL)

EBL: Source selection and simulations

- 80 sources used, 0.019 < z < 2.55
- 1110 hours of total observation time over 10 years
- Assumed intrinsic spectra:
 - Fits to published spectral data points (long term & TeV flaring)
 - Dedicated Fermi analysis (GeV flaring)
 - 3FHL extrapolation
 - Exponential cut-off at 1 / (1 + z) TeV
- Only sources with firm redshift determination used

EBL: Results

Redshift

Simulating and searching for the cascade

- Assumed observations: 50 hours of 1ES0229+200
- Cascade simulated with CRPROPA code [Alves Batista et al. 2016]
- Include point-source and extended halo component in the fit

 10^{2} sec)] 10^{1} dN/dE [eV/(cm² 10^{0} 10 \mathbb{E}^2 10^{-1} ΤU

Possible detection significance of the halo

IGMF parameter space that will be probed with CTA observations

Searching for spectral irregularities with NGC 1275

[Ajello et al. 2016]

Searching for spectral irregularities with NGC 1275

[Ajello et al. 2016]

Searching for spectral irregularities with NGC 1275

[Ajello et al. 2016]

Simulated spectrum of NGC 1275

NGC 1253 will be observed through galaxy cluster key science program

Simulated spectrum of NGC 1275

NGC 1253 will be observed through galaxy cluster key science program

ALP parameter space that will be probed with CTA

Searching for LIV signatures

Mkn 501 flare LIV absent

1ES0229+200 LIV n=2 present

Possible constraints on LIV

Conclusions

- We have conducted a comprehensive sensitivity study to assess CTA capabilities to search for processes that affect gamma-ray propagation
- Developed tools are ready to be used when first CTA data is taken
- Dedicated sensitivity studies and detailed tool development will be continued in the future
- CTA will have unprecedented sensitivity to detect (constrain) the EBL, IGMF, ALPs, and LIV

EBL: Results

No exponential cutoff fitted in last two redshift bins

Redshift

EBL: Results

Exponential cutoff simulated at 10 TeV / (1+z) and no exponential cutoff fitted beyond z=0.5

Systematic effects on ALP constraints

PRELIMINARY

LIV detection rejection significances

n=1

n=2