The Extragalactic Background Light

Marco Ajello [Clemson University] 1st CTA Science Symposium

The Extragalactic Background Light

- ->constraints on galaxy evolution, star formation activity, dust extinction processes
- ->understanding cosmic structure formation and evolution

The Extragalactic Background Light

Light emitted by stars and AGN

 10^{-1}

10²

10

10⁰

E I(E) [nW m⁻²s⁻¹

 10^{0}

z = 0.0 z = 0.2 z = 0.5z = 1.0

z = 2.0

z = 3.0

z = 4.0

10⁰

- ->constraints on galaxy evolution, star formation activity, dust extinction processes
- ->understanding cosmic structure formation and evolution

• Zodiacal light and our Galaxy are a hindrance for EBL direct measurement

EBL Measurements

Reality Check

 Build up of the EBL largely undetermined
Build up fundamental to determine galaxy/stellar evolution processes

This work

- Perform a time-resolved analysis,
- Analysis optimized on simulations Analysis improved over the Ackermann+12 results

Marco Ajello

First 'Detection' of the EBL attenuation

Ackermann et al. 2012

From 'Detection' to 'Characterization'

EBL measurements over 11 billion years

The Cosmic Gamma-ray Horizon

The Cosmic Gamma-ray Horizon

"The measurement of the EBL using gamma rays is only sensitive to the average EBL"

Indirect EBL measurement

$$\tau_{\gamma\gamma}(E_{\gamma}, z_s) = c \int_0^{z_s} \left| \frac{dt}{dz} \right| dz \int_{-1}^1 (1-\mu) \frac{d\mu}{2} \int_{2m_e^2 c^4/\epsilon_{\gamma}(1-\mu)}^\infty \sigma(\epsilon_{\text{EBL}}, \epsilon_{\gamma}, \mu) n_{\text{EBL}}(\epsilon, z) d\epsilon_{\text{EBL}}$$

$$n_{\mathrm{EBL}}(\epsilon, z) = (1+z)^3 \int_z^\infty \frac{j(\epsilon, z)}{\epsilon} \left| \frac{dt}{dz'} \right| dz'$$

- We cannot invert 3-4 integrals, so we need to find another way
- Two methods, both fitted via MCMC to LAT τ data
- Method 1-empirical: model j(e,z) has sum of log-normal distributions that can evolve independently
- Method 2-theoretical: use stellar population models (Finke et al. 2010) and optimize the parameters of the Cosmic Star Formation History

The EBL with Redshift

UV background in agreement with quasar proximity measurements by e.g. Kulkarni & Fall 1993, Scott+00 etc

The EBL with Redshift

UV background in agreement with quasar proximity measurements by e.g. Kulkarni & Fall 1993, Scott+00 etc. Marco Ajello

Cosmic Luminosity Density

Star Formation History

Cosmic Luminosity Density

Re-ionization

Bouwens+2018 (in prep); Oesch+2017

Hubble Frontier Fields

Hubble Frontier Fields

Inconsistencies between the analyses attributed to details of the • mass modeling of the lens (Atek+18, Bouwens+17, Livermore+17, Ishigaki+17)

End of re-ionization

Hubble Frontier Fields

Marco Ajello

• Analysis of 38 detected TeV blazars reported in Biteau & Williams 2015 (Desai, Helgason, Ajello, ApJL, 2019)

The newest EBL measurement

- Analysis of 38 detected TeV blazars (Desai, Helgason, Ajello, ApJL, 2019)
- It allows us to characterize the EBL up to the mid-IR

Hubble-Lemaître Law

- Hubble and Lemaitre first to show the Universe is expanding
- Hubble constant (1941): H₀=500 km/s/Mpc

Hubble Constant (2019)

Hubble Constant with the EBL

Hubble Constant from EBL

Hubble Constant (2019)

What will CTA do for the EBL ?

- Fantastic determination of the optical depth up to at least z=1.6
- Extend the EBL measurements to the far-IR peak

What will CTA do for the EBL ?

- Fantastic determination of the optical depth up to at least z=1.6
- Measure the far-IR EBL (dust) and its evolution
- Measure the Hubble constant with negligible statistical error

What will CTA do for the EBL ?

- Fantastic determination of the optical depth up to at least z=1.6
- Measure the far-IR EBL (dust) and its evolution
- Measure the Hubble constant with negligible statistical error
- Constrain interesting galaxy-related parameters

GRB190114c and GRB180720B

Outlook

- *Fermi*-LAT has already detected more than 3000 blazars (!)
 - Assuming we can obtain redshifts for many of those and that the LAT will take data for ~20 years:
 - We expect that the S/N of the current EBL measurement will double
 - This will provide the best constraints on the evolving EBL and the UV background
- The Cherenkov Telescope Array will
 - improve our knowledge of the IR EBL and its evolution
 - provide stronger constraints on H_0
- Some of the most interesting EBL advancements may come from GRBs

• EBL is a powerful tool for galaxy evolution, star formation and cosmology

Hubble constant

Indirect EBL Measurement

- 2 Photons convert into an electron-positron pair if :
 - $E\gamma x E_{EBL} \ge 2(m_e c^2)^2$

Intrinsic spectrum is attenuated

$$\frac{\mathrm{d}N_{\mathrm{obs}}}{\mathrm{d}E} = \frac{\mathrm{d}N_{\mathrm{int}}}{\mathrm{d}E} \times e^{-\tau_{\gamma}(E,z)}$$

Optical Depth

$$\tau_{\gamma} = \int_{0} \mathrm{d}\ell(z) \int_{-1} \mathrm{d}\mu \frac{1-\mu}{2} \int_{\epsilon'_{\mathrm{thr}}} \mathrm{d}\epsilon' \frac{\mathrm{d}n_{\mathrm{bkg}}}{\mathrm{d}\epsilon} \sigma_{\gamma\gamma}(E',\epsilon',\mu)$$

"Spectroscopy" of the EBL

• 2 Photons convert into an electron-positron pair if :

```
- E\gamma x E_{EBL} \ge 2(m_e c^2)^2
```


γ-ray (z=0)	E=10 GeV	E=100 GeV	E=1TeV
EBL photon	26 eV	2.6 eV	0.26 eV

γ-ray (z=1)	E=10 <i>G</i> eV	E=100 GeV	E=1TeV
EBL photon	52 eV	5.2 eV	0.52 eV

GRB 080916C

• A high fluence, highest redshift GRB detected by the LAT

Re-ionization

Hubble Frontier Fields

Marco Ajello

Dust attenuation

Monte Carlo Simulations

Ackermann et al. 2012, Science, 338, 1190

A new measurement of the EBL

2012

- 46 months of P7 data
- 1-500 GeV
- 150 BL Lacs
- z~0 to z=1.6

- 108 months of P8 data
- 1-1000 GeV
- 739 blazars + 1 GRB
- z~0 to z~3.1/4.35

