Cosmic Rays from Colliding Shock Flows in Massive, Compact Star Clusters

Aim: Provide rational for massive, compact, **galactic** star clusters as a significant source of cosmic rays in 100 PeV range.

Details of Colliding-shock-flows (CSFs) model in Bykov, Gladilin & Osipov 2013; Bykov et al. 2015

Credit: ESA/Hubble & NASA

Compact cluster Westerlund 1

- → Estimated age 3-5 Myr
- ➔ Contains ~50 post-MS stars, including at least 24 Wolf-Rayet stars
- → 1 parsec-scale core

(e.g., Clark et al. 2005, Crowther et al. 2006)

Colliding-Shock-Flows (CSFs) In compact star clusters:

- Expect massive stars with strong winds to be near supernova explosions
- Fermi shock acceleration will occur in isolated SNRs
- ➔ Interaction between SNR shock and massive star wind, or bow shock, may produce enhanced CR production
- → Intermediate CR sources

SNR blast wave

Wind bow / termination shock from young star.

In dense core, winds may combine to drive cluster-scale wind.

Bykov, Gladilin & Osipov (2013)

Generalize semi-analytic method of Blasi, Amato & Caprioli (2004-2010) to model nonlinear Diffusive Shock Acceleration in interaction region

Important features:

- ➔ Include shock modification from efficient CR production
- Magnetic field amplification in parallel shock approximation
- ➔ Time-dependence as shocks converge
- ➔ Simplified geometry

Interaction region where CRs from 2 shocks interact

Enhanced acceleration as CRs bounce between shock and wind

Strongly peaked because only high energy CRs can efficiently "bounce" between SNR shock and wind shock for further acceleration

Efficient Fermi acceleration in isolated SNR shock:

- Can produce hard, concave spectrum
- → BUT low maximum energy (Lagage & Cesarsky 1983)

References for CFSs: Bykov et al. 2015, 2017: PeV neutrinos from CFSs Bykov et al. 2018, 2019: High-energy CRs, electrons, γ-rays Kalyashova et al. 2019: CFSs as source of ²²Ne/²⁰Ne excess

Additional uncertainties for CRs observed at Earth from model of galaxy (Halo/disk) & interstellar CR diffusion Normalization of peak depends on geometry of CSFs !? Large uncertainty in geometry and strength of peak

SNR shock

Asymmetric wind / SNR shock

Expect shocks to produce CRs with Emax ∞ Charge, Z Scale proton peak ∞ Z for heavy ions

See also Caprioli, Blasi & Amato 2011 for heavy ion normalization

Normalization uncertainty for CRs:

- Large overall uncertainty, but considerably less uncertainty for heavy ions compared to protons
- Shock acceleration process (at fully relativistic energies) depends only on CR rigidity
- ➔ Estimate heavy ion injection from observations (Meyer et al. 1997)

- Simple cylindrical model for Milky Way
 Compact clusters distributed in thin disk
 CRs diffuse in disk & halo
- Strong time variability at Sun for CSFs
 Flux and anisotropy depend on recent, nearby events

Here look at simple case: Sources concentrated at Galactic Center

- Good estimate of average flux and average anisotropy at Earth
- ➔ More complete modeling with time & space variation, and Milky Way B-field structure, done in Bykov, Kalyashova, Ellison & Osipov 2019

- Simple cylindrical model for Milky Way
 Compact clusters distributed in thin disk
 CRs diffuse in disk & halo
- Strong time variability at Sun for CSFs
 Flux and anisotropy depend on recent, nearby events

Sources concentrated at Galactic Center

Approximate all-particle spectrum

Mollerach & Roulet (2018)

10⁴

AMS-02

Mollerach & Roulet (2018)

10⁴

AMS-02

Important constraint for galactic sources is the low observed anisotropy

Dipole anisotropy, A_{CSF} , for galactic center source of 10^{17} eV protons

model at least a factor of 2 above observations (for our parameters)

Add isotropic extra-galactic source:

Assume isotropic extra-galactic flux is $F_{ex} = f_{ex}F_{CSF}$ Then total anisotropy is $A_{tot} = \frac{A_{CSF} + f_{ex}}{1 + f_{ex}}$

For
$$\frac{F_{\rm CSF}}{F_{\rm ex}} = 1/3$$

Find ~30% of all 10¹⁷ eV CRs can be from a galactic source without violating isotropy constraints

Conclusions

- Massive, young, compact star clusters provide environment for accelerating strongly peaked CRs in PeV-EeV range → may provide substantial fraction of CRs in galactic—extra-galactic transition region.
- 2) Peaked spectrum produced by CSFs may be important factor for neutrino & γ -ray production. Some IceCube neutrinos may come from CSFs (Bykov et al. 2015).

Wolf-Rayet stars in nearby massive star clusters may have produced ²²Ne/²⁰Ne excess in CRs

Kalyashova et al. 2019 :

- → Use stellar evolution models from "Geneva" group (Ekstrom et al. 2012) to obtain ²²Ne/²⁰Ne yield.
- ➔ Assume CR acceleration occurs in shocks from multiple colliding winds (e.g., Seo etal. 2018; Aharonian et al 2019)