'First CTA Science Symposium', Bologna, 2019

Gamma-ray emission from star-forming systems with a focus on the Galactic Centre

Roland Crocker

Australian National University

CTA Australia Consortium

'First CTA Science Symposium', Bologna, 2019

Gamma-ray emission from the Galactic Centre and Fermi Bubbles

Roland Crocker

Australian National University

CTA Australia Consortium

~5-10% of Galaxy's current star formation

~5-10% of Galaxy's current star formation

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et a

Su, Slatyer and Finkbeiner 2010 (ApJ)

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et a

Galactic Centre: HE and Non-Thermal Phenomenology

Abdalla+2018 HESS Collab.

359.5 359358.50

Energetics Central Source

- * The (photon) Eddington luminosity of Sgr A* (4 x 10⁶ M_{Sun}): $5 \times 10^{44} \text{ erg/s}$
- * Socrates+ (2008) extended the momentum balance argument for L_{Edd} to derive an 'Eddington limit in cosmic rays': L_{Edd,CR} ~10⁻⁶ L_{Edd} \Rightarrow 5 x 10³⁸ erg/s for Sgr A*
- LCR,p for Sgr A* HESS source 10³⁸ 10³⁹ erg/s
- Nuclear Star Cluster: formed ~3 x 10⁴ M_☉ over last ~4 Myr (Lu+2013) ⇒ few x 10³⁹ erg/s total mechanical power

G0.9+0.1 HESS J1745-290

 $5 \quad 0 \quad 359.5 \quad 359 \quad 358.5$

Sgr B Sgr A Sgr C HESS J1745-303

HESS J1746-285

$5 \quad 0 \quad 359.5 \quad 359 \quad 358.5$

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

2.7 GHz radio data (unsharp mask, 9.4`) Pohl, Reich & Schlickeiser 1992

1.5–2.6 keV (red);

2.35–2.56 keV (green);

Su, Slatyer and Finkbeiner 2010 (ApJ)

Fermi data reveal giant gamma-ray bubbles

Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.

Fermi Bubbles

2 x 10³⁷ erg/s [1-100 GeV] hard spectrum,
Fermi Bubbles

- * 2 x 10³⁷ erg/s [1-100 GeV]
- hard spectrum,
- but spectral down-break i)
 GeV

but spectral down-break i) below ~ GeV and ii) above ~100

Fermi Bubbles

- * 2 x 10³⁷ erg/s [1-100 GeV]
- * hard spectrum,
- but spectral down-break i)
 GeV
- (fairly) uniform intensity

but spectral down-break i) below ~ GeV and ii) above ~100

Qualification: Bubbles brighter and harder at base

see Herold & Malyshev

Qualification: Bubbles brighter and harder at base

see Herold & Malyshev

Fermi Bubbles

- * 2 x 10³⁷ erg/s [1-100 GeV]
- * hard spectrum,
- but spectral down-break i)
 GeV
- (fairly) uniform intensity
- * sharp edges (< 500pc)</p>

but spectral down-break i) below ~ GeV and ii) above ~100

Fermi Bubbles

- * 2 x 10³⁷ erg/s [1-100 GeV]
- hard spectrum, *
- ~100 GeV
- * (fairly) uniform intensity
- * sharp edges (< 500pc)</p>
- coincident emission at other wavelengths *

but spectral down-break i) below ~ GeV and ii) above

A multi-wavelength composite image showing both microwaves and gamma-rays: PLANCK 30 GHz (red), 44 GHz (green), and Fermi 2-5 GeV (blue).

Slide credit: D. Pietrobon & K.M. Gorski Planck Collab.

PLANCK images a giant eruption from the heart of the Milky Way

The Galactic haze/bubbles is shown here in PLANCK data from 30-44 GHz

> The same structure at 2-5 GeV as seen by the Fermi Gamma-Ray Space Telescope

Nature

limb brightening spurs

0.17

51 0.068 0.085 0.1 0.12 0.14 0.15 Linearly polarised intensity at 2.3 GHz Jy/beam, beam size of 10.75'

Nature

0.17

Nature

limb brightening spurs

0.15

0.17

 $60^{\circ} \Rightarrow 8 \ kpc$

Linearly polarised intensity at 2.3 GHz Jy/beam, beam size of 10.75'

Nature

$60^{\circ} \Rightarrow 8 \ kpc$

limb brightening spurs

0.17

Fermi Bubble edge

⁵¹ 0.068 0.085 0.1 0.12 0.14 0.15 Linearly polarised intensity at 2.3 GHz Jy/beam, beam size of 10.75'

Northern Ridge

Galactic Centre Spur -

Southern Ridge

polarization fraction: 25-30%

Carretti, Crocker+2013

Nature

$60^{\circ} \Rightarrow 8 \ kpc$

limb brightening spurs

0.17

Fermi Bubble edge

⁵¹ 0.068 0.085 0.1 0.12 0.14 0.15 Linearly polarised intensity at 2.3 GHz Jy/beam, beam size of 10.75'

Fermi Bubbles: Three Interlocking Questions

How old are the Bubbles?

What is the gamma-ray radiation mechanism?

What energizes the Bubbles?

total enthalpy slowly inflated bubbles:

$H \equiv \frac{\gamma}{\gamma - 1} P_{\text{ext}} V = \dot{E} t$

~ $7 \times 10^{55} erg P_{ext}/(2 \times 10^4 K cm^{-3} k_B)$

Fermi Bubbles = mini version of radio galaxy jets powered by central supermassive black hole?

e.g. Centaurus A

KABOOM

K

e.g. M82

Fermi Bubbles = nuclear starburst with outflowing winds?

BOD KA

17

Bursty Star Formation in Galactic Centres Krumholz, Kruijssen, & Crocker

The (photon) Eddington luminosity of *

 $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} \text{ erg}/(3 \times 10^{42} \text{ erg/s}) \sim 1 \text{ Myr}$ **

Sgr A*(4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s

The (photon) Eddington luminosity of *

 $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} \text{ erg}/(3 \times 10^{42} \text{ erg/s}) \sim 1 \text{ Myr}$

\Rightarrow EXPLOSION

*

Sgr A*(4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s

The (photon) Eddington luminosity of *

 $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} \text{ erg}/(3 \times 10^{42} \text{ erg/s}) \sim 1 \text{ Myr}$

\Rightarrow EXPLOSION

**

Sgr A*(4 x 10⁶ M_{Sun}): 5 x 10⁴⁴ erg/s

Star formation in the Galactic Centre at a rate $\sim (0.01-0.3) M_{Sun}/yr$... the Galactic Centre is not a Starburst This injects mean mechanical power (supernova explosions, stellar winds) of ** $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$ $= 3 \times 10^{40} \text{ erg/s}$ $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} erg/(3 \times 10^{40} erg/s) \sim 100 Myr$

Star formation in the Galactic Centre at a rate $\sim (0.01-0.3) M_{Sun}/yr$... the Galactic Centre is not a Starburst This injects mean mechanical power (supernova explosions, stellar winds) of ** $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$

 $= 3 \times 10^{40} \text{ erg/s}$

 \Rightarrow SLOW INFLATION

What energises the outflow?

 $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} erg/(3 \times 10^{40} erg/s) \sim 100 Myr$

Star formation in the Galactic Centre at a rate $\sim (0.01-0.3) M_{Sun}/yr$... the Galactic Centre is not a Starburst This injects mean mechanical power (supernova explosions, stellar winds) of ** $P_{mech} \sim 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$

 $= 3 \times 10^{40} \text{ erg/s}$

⇒SLOW INFLATION

What energises the outflow?

 $t_{min} = E_{Bubbles}/P_{mech} \sim 10^{56} erg/(3 \times 10^{40} erg/s) \sim 100 Myr$

Leptonic Scenarios

- ~GeV-100 GeV γ-ray emission from IC on CMB and ISRF by hypothesised population of hard-spectrum 100 GeV-TeV electrons
- same population synchrotron-radiates into microwave frequencies
- * BUT short cooling time @ TeV (~Myr)
 - ⇒ near-relativistic transport OR in situ acceleration
 - ⇒ related to AGN-type activity

Points for/against AGN/IC scenarios

explained by shocks: Bland-Hawthorn et al. 2007] **CON**: Lack of a bright/hot X-ray edge suggests that Bubbles are 2015, Karaoke et al. 2015) imply an electron population with age $> 3 \ 10^7$ year harden)

- **PRO**: single electron population can explain both the Bubbles' gamma-ray emission (as IC) and the microwave haze (as synchrotron) **PRO**: H α measurements suggest a hard UV "flash" may have irradiated the Magellanic Stream above the nucleus I-3 Myr ago (Bland-Hawthorn et al. 2013) [but the H α emission might also be **CON**: we are required to be seeing the Bubbles at a privileged time expanding, at most, at the sound speed 300 km/s (Tahara et al.
- **CON:** Steep-spectrum polarized radio lobes coincident with Bubbles
- **CON:** Difficult to understand why observed gamma-ray spectrum does not soften with latitude in an IC model (observationally may even

Hadronic Scenario

Crocker & Aharonian PRL 2011

- Bubbles' gamma-ray luminosity requires a source of protons of power ~few x 10³⁹ erg/s
- * This is the power supplied by nuclear SF:
- * $L_{CR} \sim 0.1 \times 0.08 M_{Sun}/yr \times 1 SN/(90 M_{Sun}) \times 10^{51} erg/SN$

 $= 3 \times 10^{39} \text{ erg/s}$

- * BUT low $n_H \Rightarrow$ **very** long pp cooling time,
 - t_{pp} ~ 3 Gyr (n_H/0.01 cm⁻³)⁻¹
- * >few Gyr (!) to establish steady state on hot gas phase

Points for/against SF/hadronic scenarios

PRO: Nuclear star formation 'should' launch an outflow

be volume filling phase) for smooth surface brightness

- **PRO**: Bubbles' gamma-ray luminosity requires a source of protons of power ~few x 10³⁹ erg/s...this is the approximate power supplied by nuclear SF to cosmic rays that escape the GC
- **CON:** Secondary electrons predict a too-steep spectrum to
 - explain the haze \Rightarrow cannot avoid primary electrons
- **CON**: Structures have to maintain coherence for long timescales **CON**: Need target gas for the CR p's to collide with (and cannot
- **CON**: Target gas needs to be distributed in such a way to account

Systematic shift base of FBs

Fermi bubbles 20° 10° 0° -10° -20° -1σ 1σ

Acero et al. (Fermi LAT) ApJS 223 (2016)

Fermi bubbles

26.7-10.08.3Ackermann et al. (Fermi LAT) ApJ 840 (2017)

Residual significance in a model without FB

Residuals (1.24 - 228.65 GeV)

Storm et al JCAP 08 (2017) 022

credit: Malyshev TeVPA 2018

The Bubbles saturate the non-thermal luminosity expected from nuclear star formation

Yun et al. 2001 ApJ 554, 803 fig 5

× 1019 Watt/Hz ろ П GHz 4.14

FIR-RC

RC in deficit wrt expectation from FIR

HESS region is $1 \text{ dex} (> 4\sigma)$ off correlation

i.e. GHz RC emission of CMZ region only ~10% expected

Yun et al. 2001 ApJ 554, 803 fig 5

FIR-RC

RC in deficit wrt expectation from FIR

HESS region is $1 \text{ dex} (> 4\sigma)$ off correlation

i.e. GHz RC emission of CMZ region only ~10% expected

× 1020 Watt/Hz S II GHz

Fermi collab 2012

Fermi collab 2012

Fermi collab 2012

Fermi collab 2012

Fermi collab 2012

Fermi collab 2012

Fermi collab 2012

TeVPA 2019 @ University of Sydney, Australia

Time: 2-6 December 2019 (Southern hemisphere summer)

Questions?

galactic center

galactic center **astrology** galactic center **definition** galactic center **in natal chart** galactic center **series**

Press Enter to search.

Report inappropriate predictions

