The outflow from the Galactic center

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma-ray bubble

Galactic plane

Northeri

Sagittarius A

Base of gamma-ray bubb

Southern

Gabriele Ponti INAF Brera-Merate

The outflow from the Galactic center

Deep X-ray scans will be important for CTA

Gabriele Ponti INAF Brera-Merate

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma-ray bubble.

Galactic plane

Sagittarius

Base of gamma-ray bubb

Souther

Outflows from the Milky Way center

Fermi Bubbles (E>2GeV/E<2GeV)

Su +10; Kataoka +18

Outflows from the Milky Way center

Rosat Band 6 and 7

Fermi Bubbles (E>2GeV/E<2GeV)

The central degrees of the Milky Way

Abundant gas reservoir ~3×10⁷ M_{Sun} → Mini starburst

The central degrees of the Milky Way

3EG J1746-2851

Region rich in cosmic rays! 3EG J1744-3011

0

Hess Collaboration +06

The central degrees of the Milky Way

3EG J1746-2851

Region rich in cosmic rays! 3EG J1744-3011

0

Hess Collaboration +06

The new XMM-Newton view of the Galactic center

More than 100 EPIC observations Exposure > 1.5 Ms (central 15') > 200 ks in the plane

1 deg

What is the origin of the diffuse emission?

0.5-2 keV Green: 2-4.5 keV Blue: 4.5-12 keV

What is the origin of the diffuse emission?

0.5-2 keV Green: 2-4.5 keV Blue: 4.5-12 keV

ized counts s-1 keV-1 arcmin-2 normali

Si xiii, S xv, Ar xvii

Sgr A's bipolar lobes -> outflow from central parsec Morris +13; Zhao +15; Ponti +19

ATLAS OF DIFFUSE X-RAY EMITTING FEATURES				
Name	Other name	Coordinates (l, b)	Size arcsec	References
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117,118
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,11
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,11
SNR - BUBBLES - SU	UPER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,81,119,120
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,51,66
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,75,81,120,121
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,17,58
	G359.79-026	359.79,-0.26	8×5.2	X 15,16,17,58
	G0.0-0.16††	0.00,-0.16		X This work
G359.87+0.44	Cane	359.87,+0.44	11×5	R 48
	G359.85+0.39			
20pc Sgr A*'s lobes		359.94, -0.04	5.88	R 32,33,34,17
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,58,60,61
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20,48,75,81
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This work
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This work
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,81,82
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4	0.40,-0.02	4.7 imes 7.4	X 22
G0 52-0 046	00,42-0,04	0 519 -0 0465	24×51	This work
G0 57-0 001		0.57.0.001	1.5×2.9	This work
G0 57-0.018+	CXO 1174702 6-282733	0.570.0018	0.2	X 23 24 58 59 68 80
G0.61+0.01+	Suzaku 11747 0-2824 5	0.61 +0.01	22×48	X 22 65 79
G0.9+0100	SNR 0.9+0.1	0.867 +0.073	76 2 7 9	R 25 26 27 28 29 48 75 81 82
DS1	G1 2-0.0	1 17 +0.00	34 2 60	X 23,20,27,20,27,40,73,01,02
Sar D SNR	G1.2-0.0	1.02.017	10×80	P 20 21 49 51 75 77 81 82
SELD SINK	G1 05-0 15	1.04,0.17	10 × 0.0	K 30,31,40,31,73,77,01,02
	G105-0.15			
	G10.0.1			
G1401	01.0-0.1	14-010	10×10	D 73 91 92
01.00.1		1.4, 0.10	10 × 10	K / 5,01,02

A catalogue of X-ray features

Atlas of all (~15) SNR in the region

ATLAS OF DIFFUSE X-RAY EMITTING FEATURES				
Name	Other name	Coordinates (l, b)	Size arcsec	References
STAR CLUSTERS:				
Central star cluster		359,9442, -0.046	0.33	45,116,117,118
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,11
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,11
SNR - BUBBLES - SU	PER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,81,119,120
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,51,66
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,75,81,120,121
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,17,58
	G359.79-026	359.79,-0.26	8×5.2	X 15,16,17,58
	G0.0-0.16††	0.00,-0.16		X This work
G359.87+0.44	Cane	359.87,+0.44	11×5	R 48
	G359.85+0.39			
20pc Sgr A* 's lobes		359.94, -0.04	5.88	R 32,33,34,17
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,58,60,61
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20,48,75,81
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This work
	G0.13,-0.12>	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This work
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,81,82
	G0.34+0.05			
	G0.33+0.04			
G0.40-0.02	Suzaku J1746.4-2835.4 G0.42-0.04	0.40,-0.02	4.7×7.4	X 22
G0.52-0.046		0.5190.046	2.4×5.1	This work
G0.57-0.001		0.570.001	1.5×2.9	This work
G0.57-0.018†	CXO J174702.6-282733	0.5700.018	0.2	X 23.24.58.59.68.80
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22.65.79
G0.9+01♡	SNR 0.9+0.1	0.867.+0.073	7.6×7.2	R 25,26,27,28,29,48,75,81,82
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,75,77,81,82
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G14-0.1		14-0.10	10×10	R 73 81 82

A catalogue of X-ray features

Atlas of all (~15) SNR in the region 3.5×10⁻⁴ yr⁻¹ < SN rate < 15×10⁻⁴ yr⁻¹

ATLAS OF DIFFUSE X-RAY EMITTING FEATURES ne Coordinates Size References (1, b) arcsec 359.9442, -0.046 0.33 45,116,117,118 0.1604, -0.0591 0.5 1.63,11 0.1604, -0.0591 0.7 122456 738 020 40 11

Name	Other name	(l, b)	arcsec	References
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117,118
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,11
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,11
SNR - BUBBLES - SU	PER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,81,119,120
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,51,66
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,75,81,120,121
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,17,58
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,17,58
	G0.0-0.16††	0.00,-0.16		X This work
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A* 's lobes		359.94, -0.04	5.88	R 32,33,34,17
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,58,60,61
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20,48,75,81
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This work
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This work
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,81,82
	G0.34+0.05			
G0.40-0.02	Suzaku J1746.4-2835.4	0.400.02	4.7×7.4	X 22
00110 0102	G0.42-0.04	01101012		
G0.52-0.046		0.519,-0.046	2.4×5.1	This work
G0.57-0.001		0.57,-0.001	1.5×2.9	This work
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59,68,80
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22,65,79
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6×7.2	R 25,26,27,28,29,48,75,81,82
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,75,77,81,82
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.4,-0.10	10×10	R 73,81,82

Atlas of all (~15) SNR in the region 3.5×10⁻⁴ yr⁻¹ < SN rate < 15×10⁻⁴ yr⁻¹ Large kinetic energy input > 1.1×10⁴⁰ erg s⁻¹ Assuming Kroupa IMF: SFR ~ 0.035-0.15 M_{Sun} yr⁻¹

A catalogue of X-ray features

ATLAS OF DIFFUSE X-RAY EMITTING FEATURES ne Coordinates Size References (1, b) arcsec 359.9442, -0.046 0.33 45,116,117,118 0.1604, -0.0591 0.5 1.63,11 0.1604, -0.0591 0.7 122456 738 020 40 11

Name	Other name	(l, b)	arcsec	References
STAR CLUSTERS:				
Central star cluster		359.9442, -0.046	0.33	45,116,117,118
Quintuplet		0.1604, -0.0591	0.5	1,63,11
Arches	G0.12+0.02	0.1217, 0.0188	0.7	1,2,3,4,5,6,7,8,9,39,40,11
Sh2-10	DB00-6	0.3072,-0.2000	1.92	10,11,12,63,11
Sh2-17	DB00-58	0.0013, 0.1588	1.65	13,63,11
DB00-05	G0.33-0.18	0.31 -0.19	0.4	22,63,11
SNR - BUBBLES - SU	PER-BUBBLES:			
G359.0-0.9	G358.5-0.9 - G359.1-0.9	359.03,-0.96	26×20	X-R 48,51,75,76,81,119,120
G359.07-0.02	G359.0-0.0	359.07,-0.02	22×10	R 14,48,51,66
	G359.12-0.05	359.12,-0.05	24×16	X 66
G359.10-0.5		359.10,-0.51	22×22	X-R 37,48,51,56,74,75,81,120,121
G359.41-0.12		359.41,-0.12	3.5×5.0	X 14
Chimney		359.46,+0.04	6.8×2.3	X 14
G359.73-0.35‡		359.73,-0.35	4	X 58
G359.77-0.09	Superbubble	359.84,-0.14	20×16	X 15,16,17,58
	G359.79-026b	359.79,-0.26	8×5.2	X 15,16,17,58
	G0.0-0.16††	0.00,-0.16		X This work
G359.87+0.44	Cane G359.85+0.39	359.87,+0.44	11×5	R 48
20pc Sgr A* 's lobes		359.94, -0.04	5.88	R 32,33,34,17
G359.92-0.09‡	Parachute - G359.93-0.07	359.93,-0.09	1	R 35,38,43,47,58,60,61
Sgr A East	G0.0+0.0	359.963, -0.053	3.2×2.5	X-R 5,18,19,20,48,75,81
G0.1-0.1	Arc Bubble	0.109,-0.108	13.6×11	X This work
	G0.13,-0.12b	0.13,-0.12	3×3	X 17
G0.224-0.032		0.224,-0.032	2.3×4.6	X This work
G0.30+0.04	G0.3+0.0	0.34,+0.045	14×8.8	R 21,48,51,81,82
	G0.34+0.05			
G0.40-0.02	Suzaku J1746.4-2835.4	0.400.02	4.7×7.4	X 22
00110 0102	G0.42-0.04	01101012		
G0.52-0.046		0.519,-0.046	2.4×5.1	This work
G0.57-0.001		0.57,-0.001	1.5×2.9	This work
G0.57-0.018†	CXO J174702.6-282733	0.570,-0.018	0.2	X 23,24,58,59,68,80
G0.61+0.01†	Suzaku J1747.0-2824.5	0.61,+0.01	2.2×4.8	X 22,65,79
G0.9+01♡	SNR 0.9+0.1	0.867,+0.073	7.6×7.2	R 25,26,27,28,29,48,75,81,82
DS1	G1.2-0.0	1.17,+0.00	3.4×6.9	X 31
Sgr D SNR	G1.02-0.18	1.02,-0.17	10×8.0	R 30,31,48,51,75,77,81,82
	G1.05-0.15			
	G1.05-0.1			
	G1.0-0.1			
G1.4-0.1		1.4,-0.10	10×10	R 73,81,82

Atlas of all (~15) SNR in the region 3.5×10⁻⁴ yr⁻¹ < SN rate < 15×10⁻⁴ yr⁻¹ Large kinetic energy input > 1.1×10⁴⁰ erg s⁻¹ Assuming Kroupa IMF: SFR ~ 0.035-0.15 M_{Sun} yr⁻¹

A catalogue of X-ray features

→ Powering Galactic outflows?

Law +11; Crocker +11; 12; Yoast-Hull +14; Jouvin +15

High latitude soft plasma

22

0.23

0.26

0.32

0.44

0.67 1.1 2.1 3.9 7.6

High latitude soft plasma

What is its origin?

22				
----	--	--	--	--

0.23

0.26

0.32

0.44

7.6

ase of gamma ray bubble.

alactic plane -

Sagittarius A*

Northern chimney

~160 light years

1.5-2.6 keV soft 2.35-2.56 Sxv 2.7-2.97 keV

Base of gamma ray bubble

Northern chimney

Sagittarius A*

Galactic plane

Base of gamma-ray bubble

Southern chimney

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

~160 light years

The Galactic center Chimneys

1.5-2.6 keV soft 2.35-2.56 Sxv

Base of gamma-ray bubble

Northern chimney

Sagittarius A*

Galactic plane -

Base of gamma-ray bubble

Southern himne

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

~160 light years

The Galactic center Chimneys

→ Discovery of prominent hot (X-ray emitting) features extending hundreds of parsecs above and below the Galactic plane

1.5-2.6 keV soft 2.35-2.56 Sxv

Base of gamma-ray bubble

Norther chimnev

Sagittarius A'

Galactic plane

Base of gamma-ray bubble

Southerr himne

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

~160 light years

The Galactic center Chimneys

→ Discovery of prominent hot (X-ray emitting) features extending hundreds of parsecs above and below the Galactic plane

→ The Chimneys connect the central parsecs with the base of the Fermi bubbles

The measured physical parameters Ponti et al. 2019, Nature XMM 1.5-2.6 keV Galactic latitude 50 pc Sgr A* 🔶 Galactic plane Edges to Fermi bubbles 359 Galactic longitude

The measured physical parameters

→ L_{15pc} ~ 8×10³⁸ erg s⁻¹

→ L_{15pc} ~ 8×10³⁸ erg s⁻¹

→ Tidal disruptions onto Sgr A* (10⁵¹⁻⁵² erg every 10⁴ yr) or SN of central star cluster

→ L_{15pc} ~ 8×10³⁸ erg s⁻¹

→ Tidal disruptions onto Sgr A* (10⁵¹⁻⁵² erg every 10⁴ yr) or SN of central star cluster

> ETh Chim ~ 4×10⁵² erg t_{s Chim} ~ 3×10⁵ yr

→ L _{Chim} ~ 4×10³⁹ erg s⁻¹

→ L_{15pc} ~ 8×10³⁸ erg s⁻¹

→ Tidal disruptions onto Sgr A* (10⁵¹⁻⁵² erg every 10⁴ yr) or SN of central star cluster

> ETh Chim ~ 4×10⁵² erg t_{s Chim} ~ 3×10⁵ yr

→ L _{Chim} ~ 4×10³⁹ erg s⁻¹

→ Are these the same outflow?

→ L_{15pc} ~ 8×10³⁸ erg s⁻¹

→ Tidal disruptions onto Sgr A* (10⁵¹⁻⁵² erg every 10⁴ yr) or SN of central star cluster

> ETh Chim ~ 4×10⁵² erg t_{s Chim} ~ 3×10⁵ yr

→ L chim ~ 4×10³⁹ erg s⁻¹

→ Are these the same outflow? → Similar adiabatic laws but different normalisation (Chimney more powerful)

→ Similar adiabatic laws but different normalisation (Chimney more powerful)

Quasi-continuous train of episodic energy injections (TDE-SN) power a volume filling (f ~ 1) hot plasma (as computed before)

Quasi-continuous train of episodic energy injections (TDE-SN) power a volume filling (f ~ 1) hot plasma (as computed before) But filling factor might be $f << 1... \rightarrow$ hot plasma tracer of a

more powerful dark flow (as in starbursts)

Quasi-continuous train of episodic energy injections (TDE-SN) power a volume filling (f ~ 1) hot plasma (as computed before)

But filling factor might be f << 1... → hot plasma tracer of a more powerful dark flow (as in starbursts)

→ Chimney's longitudinal extent ~ distribution of massive stars

DE-SN) fore) for of a

Quasi-continuous train of episodic energy injections (TDE-SN) power a volume filling (f ~ 1) hot plasma (as computed before)

But filling factor might be f << 1... → hot plasma tracer of a more powerful dark flow (as in starbursts)

→ Chimney's longitudinal extent ~ distribution of massive stars

Alternatively: 1) Chimney's close to hydrostatic equilibrium 2) cooling time $t_c \sim 2 \times 10^7$ yr

DE-SN) fore) for of a

Quasi-continuous train of episodic energy injections (TDE-SN) power a volume filling (f ~ 1) hot plasma (as computed before)

- But filling factor might be $f << 1... \rightarrow$ hot plasma tracer of a more powerful dark flow (as in starbursts)
 - → Chimney's longitudinal extent ~ distribution of massive stars

Alternatively: 1) Chimney's close to hydrostatic equilibrium 2) cooling time $t_c \sim 2 \times 10^7$ yr → Chimney's might be remnants of a past (much more powerful) **Outflow** (e.g., AGN-like accretion onto Sgr A*)

The channel feeding the Fermi bubbles

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

To inflate Fermi bubbles L ~ 10⁴⁰⁻⁴⁴ erg s⁻¹... Chimneys can be this channel

Base of gamma-ray bubble

lactic plane

Norther

Sagittarius A*

Base of gamma-ray bubble

Southern

Future: eROSITA!

Rosat all-sky soft X-ray survey

Red: 0.1-0.4 keV Green: 0.5-0.9 keV Blue: 0.9-2.0 keV

Future: eROSITA!

Rosat all-sky soft X-ray survey

Red: 0.1-0.4 keV **Green: 0.5-0.9 keV** Blue: 0.9-2.0 keV

Future: eROSITA!

Rosat all-sky soft X-ray survey

0.1-0.4 keV Red: Green: 0.5-0.9 keV Blue: 0.9-2.0 keV

Connection between energetic activity in the disc with Galactic corona and halo

Conclusions

Discovery of the Chimneys: The channel connecting the central parsec to the Fermi bubbles

ESA News/XMM-Newton/G. Ponti et al. 2019, Nature

Base of gamma-ray bubble Southern. chimney

Juseful for CTA Galactic center and plane surveys

Sagittarius A

