CTA as a Probe of Extragalactic CR Sources

Where Does Extragalactic Begin?

Candidate Sources- Basic Argument Hasn't Changed!

DESY.

How Far is the Nearest Source?

Fargion et al. (2015), 1412.1573

CTA Symposium- Andrew Taylor

Galactic Center- Sgr A*

HESS Coll. Nature 531 (2016) 476

Analysis of Sgr A* 'point source' at Galactic center
Inflection evident in spectrum around 100 GeV revealing presence of new hard component

Further Questions:
1) Maximum energy of
cosmic rays produced? (info
from Auger)
2) Stability of the source
Power?

Max Energy on Smaller Scales of Cen A?

CTA Symposium- Andrew Taylor 10

(Hillas criterion)

Other (Local) Candidates- GRAs

New Information About sGRBs

synchrotron Inv

110 days

Inverse Compton

H.Ę.S.S

Acceleration within remnant timescale constraint ($t_{acc} < 100$ days) $\mathbf{B} > 0.02 \text{ mG}$ Absence of break in synchrotron emission spectrum up to X-ray energies constraint $\mathbf{B} < 2 \text{ mG}$

...alternatively, synchrotron emitting electrons may be always "fresh", or the injection spectrum from the source may be very hard and the electrons observed cooled

 10^{41} 2 mG 10^{39} 10^{37} 20 mG 10^{35} 10^{33} 10^{31} 10^{29} 10^{-8} 10^{-4} 10^{0} 10^{4} 10^{8} 10^{12} 10^{16} E_{γ} (eV) 11.15 10^{19} $2 \,\mathrm{G}$ 10^{18} $E_{\rm p}^{\rm max}$ (eV) 10^{17} 20 mG2 mG 10^{16} √nee 10^{15} 2040 60 80 100 t (days)

Kimura et al. 2018 (1807.03290)

Rogrigues et al. 2018 (1806.01624)

The Origin of Protons Below the Ankle

12

Future Probes- Cutoff Region

Cut-off Generation- A Simple Case

- Bohm diffusion (q=1) + only escape results in simple exponential cutoff.
- Some simplifications to the transport equation:

Cut-off Shape- Emission Dependence

$$\frac{dN}{dE_{e}} \propto E_{e}^{-\Gamma} e^{-(E_{e}/E_{\max})^{\beta_{e}}}$$

$$rac{\mathrm{d}\mathbf{N}}{\mathrm{d}\mathbf{E}_{\gamma}} \propto \mathbf{E}_{\gamma}^{-\mathbf{\Gamma}} \mathbf{e}^{-(\mathbf{E}_{\gamma}/\mathbf{E}_{\mathrm{max}})^{eta_{\gamma}}}$$

Recall generally, $eta_{\mathbf{e}} = \mathbf{2} - \mathbf{q} - \mathbf{r}$

Different emission processes dictate different relation between electrons and gamma rays

e.g.

• Synchrotron/IC Thomson:

$$\beta_{\gamma} = rac{eta_{\mathbf{e}}}{eta_{\mathbf{e}} + \mathbf{2}}$$

 \cap

• SSC:
$$eta_\gamma = rac{eta_{\mathbf{e}}}{eta_{\mathbf{e}}+4}$$

• IC (Klein Nishina) $eta_\gamma=eta_{f e}$

Good measurement of gamma ray cut-off can give insight into the acceleration environment

Observation of Cut-offs in Gamma-ray Spectra

2nd Brightest AGN Flare-

3C 279 June 2015

Parameter	$\Gamma = 1.2$
$N \; [\mathrm{ph/cm^2/s/GeV}]$	$(2.8^{+0.8}_{-0.6}) 10^{-4}$
Γ (fixed)	1.2
$E_c \; [\text{GeV}]$	$(8.4^{+6.6}_{-4.1}) 10^{-3}$
β_{γ}	0.27 ± 0.02
E_s (fixed) [GeV]	

Values obtained on a 3 days integration Note- X-ray observations during flare indicated that $\ \Gamma = 1.17 \pm 0.06$

Vela PSR - CTA estimate after 5 hours

 10^{3}

CTA - differential sensitivity 0.5 hrs

CTA - differential sensitivity 50 hrs

Study using the expected **CTA** performance Fermi data integrated over 3 days Constraint on parameter at 10% level obtained during only 0.5 hr flare!

Conclusion

- Nearby extragalactic cosmic ray sources must exist
- Further probe of the Galactic center still needed to understand nature and limitations of source
- The probe of nearby candidates is helping to put the pieces in place about how these accelerators operate
- The time domain holds key potential for probing sources, which CTA is particularly suited to take advantage of

A Simple Case (II)- q=1, only escape

• Rearranging the terms (and explicitly stating the dependences from p of the parameters):

$$\frac{1}{\mathbf{p^2}}\frac{\partial}{\partial \mathbf{p}}\left(\mathbf{p^2D_0}\frac{\mathbf{p}}{\mathbf{p_0}}\frac{\partial \mathbf{f}}{\partial \mathbf{p}}\right) - \frac{\mathbf{f}}{\tau_{\mathbf{esc}}(\mathbf{p})} = \delta(\mathbf{p}), \qquad \tau_{\mathbf{esc}}(\mathbf{p}) \propto \mathbf{p^{-1}}$$

$$\begin{split} \frac{\partial^2 f}{\partial p^2} + \frac{3}{p} \frac{\partial f}{\partial p} - \left(\frac{1}{D_0 \tau_0}\right) f = \delta(p) \\ \\ \hline \\ & \text{Cutoff comes from balancing} \longrightarrow \quad f \propto A e^{-p/p_{\tau}} \end{split}$$

Recall generally, $~~eta_{\mathbf{e}} = \mathbf{2} - \mathbf{q} - \mathbf{r}$

$$\mathbf{q} = \mathbf{1}, \ \mathbf{r} = \mathbf{0}, \
ightarrow \ eta_{\mathbf{e}} = \mathbf{1}$$

(Note- energy losses for the $\mathbf{r} = \mathbf{0}^{\text{CTA Symposium-Andrew Taylor}}$ case will not alter this result)

Observation of Cut-offs in Gammaray Spectra

Test case- Vela Pulsar (brightest source)

pace Telescop

Parameter	Value
$N \; [\mathrm{ph/cm^2/s/GeV}]$	$(1.39^{+0.12}_{-0.10}) 10^{-5}$
Γ	1.019 ± 0.011
$E_c [{ m GeV}]$	0.238 ± 0.016
eta_γ	0.464 ± 0.009
E_s (fixed) [GeV]	0.83255

• Note- MCMC method used to explore 'good-fit' region. This has the benefit of being stable on the landscape being explored

Observation of Cut-offs in Gammaray Spectra

 Brightest AGN Flare-3C 454 Nov 2010 10^{-8} E² dN/dE [erg/cm² /s] 10⁻⁹ $\beta_{\gamma} = 0.4 \pm 0.1$ 10⁻¹⁰ 3C 454.3 3C 454.3 - best fit 10^{-11} 10^{0} 10^{2} 10^{-1} 10^{1}

Energy [GeV] Romoli et al., Astropart.Phys. 88 38-45 (2017)

pace Telescope

Parameter	Value
$N \; [{\rm ph/cm^2/s/GeV}]$	$\left(4.7^{+3.9}_{-1.2}\right)10^{-5}$
Γ	$1.87\substack{+0.08\\-0.12}$
$E_c [{\rm GeV}]$	$1.1\substack{+1.6 \\ -0.9}$
eta_γ	0.4 ± 0.1
E_s (fixed) [GeV]	0.41275

- Indicating a cut-off value of the primary particles around 1 GeV
- Caveats:
 - Values obtained on a 7 days integration (for statistics)
 - Spectrum variable during the flare > superposition effects?

3C 279 June 2015 Flare-Temporal Evolution

Can We Do Better Already? Fermi + H.E.S.S.II Fit

Parameter	MCMC fit
$\log_{10} N_0 ~[\mathrm{ph/cm^2/s/GeV}]$	$(-4.75^{+0.91}_{-0.24}) \times 10^{-5}$
Γ	$(1.93^{+0.29}_{-0.41})$
$\log_{10} E_c \; [\text{GeV}]$	$0.13^{+1.33}_{-2.82}$
eta_γ	$0.34\substack{+0.32\\-0.14}$

 Joint fit of Fermi-LAT data (9 hours centred on HESSII obs.) taken on night 2

$$eta_{\gamma} = \mathbf{0.34^{+0.32}_{-0.14}}$$

Cut-off Shape- Electrons & Photons

Integrand-

Further Acceleration Further Out?

Future Probes-Temporal Structure

Possibility that emission comes from much higher energy emission (potentially from proton losses.....)

Intr. spec.

Fermi/LAT

HESS

 $B = 10^{-16.5} G$ B = 10⁻¹⁷ G B = 10^{-17.5} G

 10^{10}

B = 0 G

 s^{-1}

 $E_{\gamma}^2 dN_{\gamma}/dE_{\gamma} ~[eV~cm^{-2}$

 10^{1}

 10^{0}

 10^{-1}

10-

 10^{9}

'Hard'' case

 10^{12}

 10^{13}

 10^{11}

 E_{γ} [eV]