

## THE MICROQUASARS OF THE CYGNUS REGION: GAMMA-RAY EMISSION AND PERSPECTIVES WITH CTA

GIOVANNI PIANO (INAF-IAPS, AGILE TEAM)

FIAMMA CARITANIO (INAF-IAPS), IMMA DONNARUMMA (ASI), DOMITILLA DE MARTINO (INAF-OA CAPODIMONTE)

WORK WAS CONDUCTED IN THE CONTEXT OF THE CTA CONSORTION

Provide the second seco

CTA 1<sup>st</sup> Science Symposium Bologna, May 6-9 2019

#### THE CYGNUS REGION AS DETECTED BY AGILE (E > 100 MeV) IN GALACTIC COORDINATES



#### THE CYGNUS REGION AS DETECTED BY AGILE (E > 100 MeV) IN GALACTIC COORDINATES



#### Microquasar

 $\bullet$ 

 $\bullet$ 



X-ray binary systems: accreting NS or BH + jets Variable X-ray emission Radio emission: variable low-level flux + giant flares (Cyg X-3)

Typically, correlated radio/soft X-ray/hard X-ray emission

Transient  $\gamma$ -ray activity above 50 MeV

## Microquasars in the Cygnus region

|                | V404 Cygni                | Cygnus X-3            | Cygnus X-1                   |
|----------------|---------------------------|-----------------------|------------------------------|
| type           | LMXB                      | НМХВ                  | НМХВ                         |
| compact object | BH (9 $M_{\odot}$ )       | BH or NS (?)          | BH (4.8-14.8 $M_{\odot}$ )   |
| companion star | K3 III (0.7 $M_{\odot}$ ) | WR (> 7 $M_{\odot}$ ) | 09.7 lab (17-31 $M_{\odot})$ |
| distance       | 2.39 kpc                  | 7.4 kpc               | 1.9 kpc                      |
| orbital period | 6.47 days                 | 4.8 hours             | 5.6 days                     |

## V404 Cygni

After ~26 years of quiescence  $\rightarrow$  active phase in June 2015

High Energy  $\gamma$ -ray flare (50-400 MeV) coincident with outbursts in: radio X-ray soft  $\gamma$ -rays (continuum & 511 keV annihilation line)





#### V404 Cygni: AGILE and Fermi-LAT observations

AGILE (50-400 MeV) simultaneous with Fermi-LAT (60-400 MeV)



#### V404 Cygni: CTA simulations

• Input spectral model  $\rightarrow$  extension of the Fermi-LAT flaring spectrum

Power Law: Prefactor = 8.0 x 10<sup>-22</sup> MeV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> Index = 3.5 PivotEnergy = 1 TeV

 5h/50h observations with CTA North [ctools] CTA IRF → North\_z20\_average(\_5h, \_50h) prod3b-v1 calibration database binned analysis (10 bins): 100 GeV – 1 TeV





CTA observations  $\rightarrow$  constraints to the emission

#### $\gamma$ -ray activity discovered in late 2009

AGILE  $\rightarrow$  (Tavani et al, Nature, 2009); Fermi-LAT  $\rightarrow$  (Fermi-LAT Collaboration et al., Science, 2009)

7  $\gamma$ -ray flares have been detected between November 2007 and July 2009:

- significance  $\geq 3\sigma$
- $\gamma$ -ray fluxes more than 10 times the steady flux [F<sub>steady</sub> = (14 ± 3) x 10<sup>-8</sup> ph cm<sup>-2</sup> s<sup>-1</sup>]







#### Repetitive multi-frequency emission pattern:

- $\gamma$ -ray activity associated with sharp/local minima in the hard X-ray light curve (Swift/BAT count rate  $\leq 0.02$  counts cm<sup>-2</sup> s<sup>-1</sup>)
- $\gamma$ -ray flares coincident with soft spectral states (RXTE/ASM count rate  $\geq$  3 counts s<sup>-1</sup>)
- $\gamma$ -ray flares around hard-to-soft or soft-to-hard spectral transitions (when it is moving into or out of the quenched state)
- $\gamma$ -ray flares a few days before major radio flares



#### Repetitive multi-frequency emission pattern:

- >  $\gamma$ -ray activity associated with sharp/local minima in the hard X-ray light curve (Swift/BAT count rate  $\leq 0.02$  counts cm<sup>-2</sup> s<sup>-1</sup>)
- >  $\gamma$ -ray flares coincident with soft spectral states (RXTE/ASM count rate  $\geq$  3 counts s<sup>-1</sup>)
- > γ-ray flares around hard-to-soft or soft-to-hard spectral transitions (when it is moving into or out of the quenched state)
- >  $\gamma$ -ray flares a few days before major radio flares

Cygnus X-3: AGILE observations

![](_page_12_Figure_1.jpeg)

#### Repetitive multi-frequency emission pattern:

- >  $\gamma$ -ray activity associated with sharp/local minima in the hard X-ray light curve (Swift/BAT count rate  $\leq$  0.02 counts cm<sup>-2</sup> s<sup>-1</sup>)
- >  $\gamma$ -ray flares coincident with soft spectral states (RXTE/ASM count rate  $\geq$  3 counts s<sup>-1</sup>)
- > γ-ray flares around hard-to-soft or soft-to-hard spectral transitions (when it is moving into or out of the quenched state)
- >  $\gamma$ -ray flares a few days before major radio flares

Both leptonic and hadronic emission models can account for the  $\gamma$ -ray flaring spectrum detected by AGILE

![](_page_13_Figure_2.jpeg)

Both leptonic and hadronic emission models can account for the  $\gamma$ -ray flaring spectrum detected by AGILE

![](_page_14_Figure_2.jpeg)

#### Cygnus X-3: AGILE and Fermi-LAT observations Recent $\gamma$ -ray activity $\rightarrow 2016 - 2017$ (Koljonen et al., A&A, 612, A27, 2018)

![](_page_15_Figure_1.jpeg)

#### Cygnus X-3: AGILE and Fermi-LAT observations Recent $\gamma$ -ray activity $\rightarrow$ 2016 – 2017 (Koljonen et al., A&A, 612, A27, 2018)

![](_page_16_Figure_1.jpeg)

#### Cygnus X-3: AGILE and Fermi-LAT observations Recent $\gamma$ -ray activity $\rightarrow$ 2016 – 2017 (Koljonen et al., A&A, 612, A27, 2018)

![](_page_17_Figure_1.jpeg)

#### Cygnus X-3: Fermi-LAT observations

![](_page_18_Figure_1.jpeg)

Zdziarski+ 2018 found 49 1d  $\gamma$ -ray flares by analyzing the Fermi-LAT data between August 2008 and August 2017. 43 of them are in soft spectral states.

![](_page_18_Figure_3.jpeg)

(Zdziarski et al., MNRAS, 479, 4399, 2018)

#### Cygnus X-3: CTA simulations

Input spectral model → inferred spectrum from a leptonic model

Power Law: Prefactor = 1.34 x 10<sup>-21</sup> MeV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> Index = 4.5 PivotEnergy = 1 TeV

5h/50h observations with CTA North [ctools]

CTA IRF → North\_z20\_average(\_5h, \_50h) prod3b-v1 calibration database binned analysis (12 bins): 100 GeV – 1 TeV

![](_page_19_Figure_5.jpeg)

Similar investigations published in:

- Paredes et al., Aph, 43, 301 (2013)
- "Science with the Cherenkov Telescope Array" CTA Consortium (2019)

![](_page_19_Picture_9.jpeg)

a CTA detection would represent a challenge for the current emission models

## Cygnus X-1: flaring activity - AGILE observations

![](_page_20_Figure_1.jpeg)

#### Cygnus X-1: flaring activity – Fermi-LAT observations

Several short (1-2d)  $\gamma$ -ray flaring episodes detected both during hard and soft spectral states (Bodaghee+ 2013, Zanin+ 2016)

![](_page_21_Figure_2.jpeg)

Bodaghee et al., ApJ, 775, 98 (2013)

Zanin et al., A&A, 596, A55 (2016)

#### Cygnus X-1: flaring activity - MAGIC observations

![](_page_22_Figure_1.jpeg)

 ~4σ hint of detection: 2006-09-24 20:58-23:41

During a hard X-ray flare INTEGRAL, Swift/BAT, RXTE/ASM

(Albert et al., ApJ, 665, L51, 2007)

![](_page_22_Figure_5.jpeg)

![](_page_22_Figure_6.jpeg)

## Cygnus X-1: flaring activity - CTA simulations

Input spectral model → MAGIC flaring spectrum

Power Law: Prefactor =  $2.3 \times 10^{-18} \text{ MeV}^{-1} \text{ cm}^{-2} \text{ s}^{-1}$ Index = 3.2PivotEnergy = 1 TeV

30m observations with CTA North [ctools]

CTA IRF → North\_z20\_average\_30m prod3b-v1 calibration database binned analysis (20 bins): 100 GeV – 1 TeV

![](_page_23_Figure_5.jpeg)

- Paredes et al., Aph, 43, 301 (2013)
- "Science with the Cherenkov Telescope Array" CTA Consortium (2019)

![](_page_23_Figure_8.jpeg)

#### Results:

a MAGIC-like sub-TeV flare would be easily detected by CTA North (significance  $\sim 40\sigma$ ) in a 30m observation

#### Cygnus X-1: steady emission

- Detected as steady source by Fermi-LAT (8y data)  $\rightarrow$  4FGL J1958.5+3512
- Persistent  $\gamma$ -ray emission associated with hard spectral state (Zdziarski+ 2014, 2017; Zanin+ 2016;...)

![](_page_24_Figure_3.jpeg)

#### Microquasars in the Cygnus region CTA simulations

- V404 Cygni → flare: according to a GeV-fit spectrum → no detection at TeV (50h obs.)
- Cygnus X-3 → flare: according to a GeV-optimized emission model → no detection at TeV (50h obs.)
- Cygnus X-1 → flare: CTA North would detect a MAGIC-like flare in a 30m observation
   → steady: CTA North would detect persistent emission if no sharp cut-off at ~100 GeV

CTA observations → crucial, even if no detection → physical constraints to:
timing of possible TeV transient emission (simultaneous to GeV flare?)
(spectral cut-off): extreme limit of particle acceleration in the jet TeV opacity for e<sup>+</sup>e<sup>-</sup> pair production

Search for persistent and transient γ-ray emission at TeV energies:
 Steady: Galactic Plane Survey (GPS) + Star-Forming Systems KSP for the Cygnus region
 Transient: prompt reaction to multi-wavelength triggers

#### Microquasars in the Cygnus region CTA simulations

- V404 Cygni → flare: according to a GeV-fit spectrum → no detection at TeV (50h obs.)
- Cygnus X-3 → flare: according to a GeV-optimized emission model → no detection at TeV (50h obs.)
- Cygnus X-1 → flare: CTA North would detect a MAGIC-like flare in a 30m observation
   → steady: CTA North would detect persistent emission if no sharp cut-off at ~100 GeV
  - CTA observations → crucial, even if no detection → physical constraints to:
    timing of possible TeV transient emission (simultaneous to GeV flare?)
    (spectral cut-off): extreme limit of particle acceleration in the jet TeV opacity for e<sup>+</sup>e<sup>-</sup> pair production

# Thanks for your attention