ISTITUTO NAZIONALE DI ASTROFISICA ITITUTO DI ASTROFISICA E PLANETOLOGIA SPAZIALI DI ROMI

Giancarlo Ghirlanda INAF – Osservatorio Astronomico di Brera

- 3. GRBs at VHE

Will CTA detect Gamma Ray Bursts? •190114C! •E. L. Riuz Valasco talk!

CTA Symposium – Bologna - May 2019

Gamma Ray Bursts

1. MeV emission - prompt emission mechanism 2. GeV emission - (mainly) afterglow component

Poster highlights

Gamma Ray Bursts

Isotropic equivalent energy 10⁵² erg/s ; z=0.01-9.3; single or double stellar origin

CTA Symp. – Bo 2019

Prompt γ-ray emission: how it appears

CTA Symp. – Bo 2019

 $T_{cool} \sim 10^{-7} \text{ sec} \ll T_{dyn} \sim R/2c\Gamma^2 \rightarrow E^{-3/2}$ [e.g. Ghisellini et al. 2000]

Below the cooling frequency

CTA Symp. – Bo 2019

Prompt should be synchrotron [Rees & Meszaros 1994; Katz 1994;

Tavani 1996; Sari et al. 1996, 1998]

Prompt γ-ray emission: doesn't look synchrotron

1. Inconsistency of spectral slopes

2. Spectral peak too narrow compared to synchrotron

CTA Symp. – Bo 2019

Prompt should be synchrotron [Rees & Meszaros 1994; Katz 1994;

Tavani 1996; Sari et al. 1996, 1998]

Prompt desn't look like synchrotron [Preece et al. 1998;

Ghirlanda et al. 2002; Kaneko et al. 2006; Frontera et al. 2006; Vianello et al. 2008; Gruber et al. 2014].

Modify theory to match observations

Oganesyan et al. 2017: 14 bright GRBs detected by Swift

62% of GRBs

Show two spectral breaks (new: low energy break 3-20 keV)

Prompt γ-ray emission: does look like synchrotron !

Look deeper into the data

Prompt γ-ray emission: does look like synchrotron !!

Fermi/GBM → GRB 160625 [Ravasio et al. 2018]

CTA Symp. – Bo 2019

Prompt γ-ray emission: does look like synchrotron !!!

Oganesyan et al. 2019: 21 GRBs with optical-X-Gamma-ray spectra

GRB061121, GRB080928, GRB110205A

- Synchrotron consistent from Optical to gamma -rays
- Optical to 1 keV is single component
- Optical exclude thermal (BB) + non-thermal components

Oganesyan et al. 2019

CTA Symp. – Bo 2019

Prompt γ-ray emission is synchrotron: parameter space

 $Log(E_c/keV)$

PB1: compactness required for variability PB2: If mini jets then IC would dominate

Oganesyan et al. 2019

CTA Symp. – Bo 2019

Prompt γ-ray emission is synchrotron: parameter space

PB1: IC would dominate

GeV emission of GRBs: origin?

Poster: Fana Dirisra et al. "LAT GRBs with z & Cosmology"

EARLY PHASE

CTA Symp. – Bo 2019

EXTENDED EMISSION

GeV emission of GRBs: two phases ...

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

EARLY PHASE DELAY

VARIABILITY

CTA Symp. – Bo 2019

EXTENDED EM LONGER **SMOOTH DECAY** (no Variability)

GeV emission of GRBs: two phases ...

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

> GeV emission (not always) spectrally consistent with extrapolation of GBM spectrum

CTA Symp. – Bo 2019

LONGER **SMOOTH DECAY** (no Variability)

GeV emission of GRBs: two phases ...

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

CTA Symp. – Bo 2019

LONGER **SMOOTH DECAY** (no Variability)

> SPECTRALLY HARDER

GeV emission of GRBs: two phases ... two zones

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

INTERNAL SHOCKS

my

GBM Nai, + Nai, + Nai,

(14.3 keV-250 keV)

4 - (> 100 MeV)

2000

1000

CTA Symp. – Bo 2019

The "Magical" GRB 190114C

CTA Symp. – Bo 2019

The "Magical" GRB 190114C

190114C the first GRB significantly detected by MAGIC (Mirzoyan+2019)

The rise and fall of the afterglow [Ravasio et al. 2019]

G. Ghirlanda, L. Nava, F. Longo, Z. Bosnjak, M.G. Bernardini, S. D. Vergani, F. Schussler, Q. Piel, A. Carosi, E. Bissaldi, T. Stoclarzyk, P. D'Avanzo, S. Inoue, P. O'Brien, A. Melandri, I. Sadeh

CTA Symp. – Bo 2019

POpulation SYnthesis Theory Integrated Very high Energy emission (POSYTIVE)

CTA detection and follow up of GRBs

CTA detections of GW counterparts

- Phenomenological model of VHE emission, from short-GRB templates
- Off-axis emission

• Simulation of CTA response (IRFs, EBL)

cta

A joint effort of the GW-CTA team:

Alessandro Carosi, Antonio Stamerra, Barbara Patricelli, Brian Humensky, Deivid Ribeiro, Elisabetta Bissaldi Fabian Schüssler, Francesco Longo, Giulia Stratta, Julien.Lefaucheur, Lara Nava, Monica Seglar-Arroyo, Stefano Covino, Susanna Vergani, Susumu Inoue, Thomas Gasparetto, Tristano Di Girolamo and Giancarlo Cella, Massimiliano Razzano.

Gamma Ray Bursts

- (1)
- >100 MeV emission: competing prompt and afterglow (early) then afterglow (extended). (2)
- 190114C shows the rise of the afterglow during prompt (3)
- CTA will unveil the GRB physics: high photon statistics (4)

	Observable	Constrain	Impact
Prompt	Shape > nu_m cutoff(t) SSC	Bulk Lorentz factor Parameter space	Jet acceleration mechanism Prompt emission mechanism
Afterglow	Max Energy Variability (>>E) Early to extended transition	GeV-TeV emission alone MW modeling	Afterglow emission mechanis Extrinsic parameters GRB effects on the ambient
GRBs as tools	EBL cutoff		EBL
GRBs as tools	Photon(E,t)		LIV

Conclusions

Prompt emission spectrum (Optical/X-ray/Gamma-ray < 1MeV): moderate fast cooling synchrotron (but ...)

Thermal (BB) components in Gamma Ray Burst prompt emission

Why not before?

Why not before?

Black Boldy + Non-thermal component excluded Oganesyan et al. 2019

 ${
m cm}^{-2}$ Å] 3.0 <u>م</u>ٰ 2.5 erg 2.0 1.5 🗎 1.0 10 ical flux

Discovery and distance

What next?

Spectral/temporal power Physics behind (emission mechanisms, acceleration)

Theseus

https://www.isdc.unige.ch/theseus/mission-payload-and-profile.html?

4 modules (composite Masks+Scintillators) 2keV-20MeV XGISs <5 arcmin

10'x10' 0.7-1.8 μm H=20

showall=1&limitstart=

4 modules (1sr fov each) 0.3-5 keV <10 arsec

SXIs

Estimate of Γ_0 from the peak of the afterglow

Bulk Lorentz factor

Transient spectral break (or cutoff?) @ 1.4 GeV

- Intrinsic apsorption
- Emission mechanism (IC in KN regime)

GeV emission

Additional peaked MeV component

Prompt γ-ray emission: how does it look like?

BATSE-CGRO [Band+1998;Preece+2000; GG+2003], BeppoSAX [Frontera+2006]; Fermi [Goldstein+2010; Ghirlanda+2011; Nava+2011; Gruber 2014]; Integral [Vianello 2008]; Swift [Sakamoto 2013] 500 60 60 50 C **L**peak 400 50 40# GRBS GRBS 40 300 30 30 200 20 20 10 100[‡] | 1: short 10 1: long 1.01.5 2.0 2.5 3.0 3.5 0.5 4.0 0.5 -2.0 -0.5 0.01.0-1.5 -1.0-25 -20 - 5 -15 -10 $Log(E_{posk})$ Low-energy spectral index High energy photon index 10Epeak 10^{4} $E\beta+2$ [erg/cm² s] 10° $\mathbf{E}\alpha + 2$ 10^{2} $\mathbf{E} \, \mathbf{F}_{\scriptscriptstyle \mathrm{E}}$ 10°

 10°

10

Lorentz Invariance Violation

(1+z)rz. $\sqrt{\Omega_{\Lambda} + \Omega_m (1+z)^3}$

Observables

[Biller+1999; MAGIC Cool. 2008; Ahronian+2008; HESS coll. 2011; Rodrigues-Martines+2006; Abdo+2009; Ghirlanda+2010; Vasileiou+2013; Amelino-Camelia+2013; Bolmont+2008; Ellis+2008]

Prompt γ-ray emission: spectral evolution and jet structure

+ Indirect evidence of structured jet in long (Salafia et al. 2015,2016) + Direct evidence of structured jet in short (Mooley et al. 2018; Ghirlanda+2019)

Prompt γ-ray emission is synchrotron: "moderate" fast cooling

[Daigne+2011; Derishev+2001; Nakar+2009; Asano+2009; Kumar+2008; Beniamini+2013]

 10^{2}

GeV emission of GRBs: some puzzles

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

GeV emission of GRBs: a brief history

SMM – GRB840805 (Share+1986)

EGRET – CGRO (6 GRBs > 100 MeV) [Sommer+1994; Hurley+1994; Gonzales+2003]

AGILE

GRB 080514 [Giuliani+2008] 090401B [Moretti+2009], 090510 [Giuliani+2009], 100724B [Del Monte+2011], 130327B [Longo+2013], 130427A [Verrecchia+ 2013], 131108A [Giuliani+2013; Giuliani+2015]

9% are Short

[e.g. Ackermann+2013]

Prompt γ-ray emission is synchrotron: "moderate" fast cooling - parameter space

Oganesyan et al. 2019

GeV emission of GRBs: Early Phase

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

EARLY PHASE

LAT emission during prmpt (MeV emission)

DELAY

> GeV emission start time is delayed wrt < MeV

VARIABILITY

GeV emission of GRBs: Late Phase

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

EARLY PHASE

LAT emission during prmpt (MeV emission)

DELAY

> GeV emission start time is delayed wrt < MeV

VARIABILITY

SPECTRAL CONSISTENCY

> GeV emission (not always) spectrally consistent with extrapolation of GBM spectrum

EXTENDED EM

LONGER

SMOOTH DECAY (no Variability)

Ackermann+2010; Vianello 2012; Nava+2015

GeV emission of GRBs: Late Phase

[in individual GRBs detected by Fermi (e.g. Abdo+2010) and in the Fermi LAT catalog: Ackermann+2013]

EARLY PHASE

LAT emission during prmpt (MeV emission)

DELAY

> GeV emission start time is delayed wrt < MeV

VARIABILITY

SPECTRAL CONSISTENCY

> GeV emission (not always) spectrally consistent with extrapolation of GBM spectrum

GeV emission of GRBs: implication

GeV 0.] Λ Rate

[Sari&Piran 1999; ... Molinari+2006; Ghirlanda+2010; Liang+2010; Longo+2012; Nava+2016, Ghrlanda+2018]

Naturally explains the delay as due to the time needed for the fireball to decelerate (larger bulk velocities earlier deceleration)

GeV emission of GRBs: implication

POpulation SYnthesis Theory Integrated Very high Energy emission (POSYTIVE)

