Particle acceleration in shocks: from simulations to observations via laboratory experiments

Frederico Fiúza

fiuza@slac.stanford.edu

NATIONAL ACCELERATOR LABORATORY

Acknowledgements

Work in collaboration with

- A. Grassi, C. Ruyer, T. Abel, S. Glenzer (SLAC/Stanford)
- **H. Rinderknecht** (LLE)
- A. Spitkovsky (Princeton)
- C. Bruulsema, W. Rozmus (Alberta)
- G. Gregori (Oxford)
- C. K. Li, R. Petrasso (MIT)
- S. Funk (Erlangen)
- Simulations with OSIRIS provided by the OSIRIS Consortium (IST/UCLA) HPC resources at Quartz (LLNL), Mira/Theta (ANL), and Cori (NERSC) Financial support from the DOE Early Career Research Program

G. Swadling, C. Huntington, D. Ryutov, D. Higginson, S. Ross, B. Remington, H.-S. Park (LLNL)

- Astrophysical shocks are efficient accelerators of both electrons and protons (cosmic rays)
- Theory of diffusive shock acceleration (DSA) is well established*
- However, injection of particles at the shock and magnetic field amplification is not fully understood and impact overall efficiency and maximum energy
- Observations (in particular, multi-wavelength) provide critical constrains on models for acceleration but shock microphysics is still not resolved
- Spacecraft measurements provide important characterization of microphysics but mostly for low Mach # shocks ($M_{sh} < 10$)

* Krymskii 1977, Axford, Leer, Skadron 1977, Bell 1978, Blandford & Ostriker 1978, Drury 1983

Kinetic simulations are important to study injection physics at the shock

- Particle-in-cell (PIC) simulations have been established over the last decades as critical tool to study acceleration in electromagnetic shocks
- For high-M_A shocks role of ambient field might be reduced and self-generated waves/magnetic turbulence (Weibel, Buneman, Bell...) control injection at shock structure

Acceleration in relativistic Weibel shocks [1]

[1] Spitkovsky ApJL 2008; [2] Matsumoto et al. PRL 2017; [3] P. Crumley et al., MNRAS 2019

 $-\mathbf{u} \times \mathbf{B}$ Integration of equations of motion $\mathbf{F}_{i} \rightarrow \mathbf{u}_{i} \rightarrow \mathbf{x}_{i}$ Weighting Weighting Δt $(\mathbf{x},\mathbf{u})_{i} \rightarrow \mathbf{J}_{i}$ $(\mathbf{E}, \mathbf{B})_{i} \rightarrow \mathbf{F}_{i}$ Integration of Field Equations on the grid $\mathbf{J}_{i} \rightarrow (\mathbf{E}, \mathbf{B})_{i}$ $\frac{\partial \mathbf{E}}{\partial t} = c \,\vec{\nabla} \times \mathbf{B} - 4\pi \mathbf{j}$ $\frac{\partial \mathbf{B}}{\partial \mathbf{B}} = -c\,\vec{\nabla}\times\mathbf{E}$

Stochastic SDA in Weibel turbulence in perpendicular shocks [2]

Laboratory experiments can complement studies of particle acceleration

- Significant experimental studies of ion-acoustic shocks since 60s
- Only now it is becoming possible to drive energetic enough plasma flows with lasers to produce electromagnetic shocks (L_{system} > 100 c/ ω_{pi} and λ_{mfp} >> L_{system})
- Controlled study of shock structure and particle acceleration for different plasma conditions (including high M_{sh})
- Benchmark numerical tools that are being used to develop injection models

National Ignition Facility

Cartoon of laser-driven counter-streaming plasma experiments

Particle acceleration in weakly magnetized collisionless shocks

100

F. Fiuza | May 8, 2019 | CTA symposium

Formation of collisionless shocks in weakly magnetized plasmas

High Mach # plasma flows can be created in the lab by laser irradiation

S. Ross et al., Phys. Plasmas (2012)

B-field amplification by the ion Weibel instability observed

C. Huntington, F. Fiuza et al. Nat. Physics 11, 173 (2015); see also W. Fox et al., PRL 111, 225002 (2013)

SLAC

Relative proton deflection at 3 MeV vs. 14.7 MeV indicates B-field dominate over E-field

B-field amplification by the ion Weibel instability observed

C. Huntington, F. Fiuza et al. Nat. Physics 11, 173 (2015); see also W. Fox et al., PRL 111, 225002 (2013)

Platform to study shock formation and particle acceleration at NIF

Experimental observation of collisionless shock formation

Density evolution of shocked plasma

Simulations show consistent Weibel-mediated shock structure

* C. Ruyer and F. Fiuza, PRL (2018); A. Grassi et al., in preparation (2019)

Experiments show clear evidence of nonthermal electron acceleration

F. Fiuza et al., in preparation (2019)

- Fast electrons from individual plasma flows are produced by the lasers and escape system before flow interaction (< 0.3 ns)
- Electrons must then be injected from 3 keV shocked plasma!
- Nonthermal electrons exceed kinetic energy of the flow ions (~ 250 keV) and can access DSA!
- $\epsilon_{\rm e}/\epsilon_{\rm flow} \sim 10^{-4}$ similar to Tycho observations (Morlino & Caprioli 2012)

Simulations reveal that injection is associated with scattering in magnetic turbulence

F. Fiuza et al., in preparation (2019); T. Katou and T. Amano arXiv:1903.02277

Stochastic interaction of electrons with magnetic turbulence allow for significant energization in ns time scale*:

$$t_{
m acc} \sim \frac{K(\varepsilon)}{v_{
m turb}^2} \sim
m ns$$

 $\varepsilon_{
m max} = |e|(u_{sh}/c)BR_{sh} \sim 500
m keV$

Energy [keV]

Conclusions and future perspectives

- Important progress in experiments of collisionless plasmas led to first laboratory measurements of: - the amplification of magnetic fields by the ion Weibel instability – the formation of electromagnetic collisionless shocks – nonthermal electron acceleration in these shocks
- complement spacecraft measurements and astrophysical observations

shocks, different B-field amplification mechanisms (e.g. Bell instability). Stay tuned!

Experiments provide important benchmark of numerical codes and injection models and can

Existing platforms can be extended to study relative acceleration efficiency of protons and electrons, magnetized

Extra slides

Shock microphysics can be scaled from lab to astrophysical plasmas SLAC

Laboratory system I

Astrophysical system 2

Main assumptions: collisionless system ($\lambda_{mfp} >> L_{system}$), weakly magnetized ($\sigma \ll I$), $v_{flow} \gg v_{th}$, electromagnetic instabilities are dominant (Div. $E \sim 0$)

D. D. Ryutov et al. Plasma Phys. Control. Fusion 54, 105021 (2012)

Normalized Vlasov-Maxwell equations:

$$\frac{\partial f_{i}'}{\partial t'} + \boldsymbol{v}' \cdot \frac{\partial f_{i}'}{\partial \boldsymbol{r}'} + \left(-\frac{\partial \boldsymbol{A}'}{\partial t'} + \boldsymbol{v}' \times \nabla' \times \boldsymbol{A}'\right) \cdot \frac{\partial f_{i}'}{\partial \boldsymbol{v}'} = 0,$$
$$\frac{\partial f_{2}'}{\partial t'} = \frac{\partial f_{2}'}{\partial t'} + \frac{\partial f_{2}'}{\partial t'} + \frac{\partial f_{2}'}{\partial t'} + \frac{\partial f_{2}'}{\partial t'} + \frac{\partial f_{2}'}{\partial t'} = 0,$$

$$\frac{\partial J_{e}}{\partial t'} + v' \cdot \frac{\partial J_{e}}{\partial r'} + \frac{1}{\mu} \left(-\frac{\partial A}{\partial t'} + v' \times \nabla' \times A' \right) \cdot \frac{\partial J_{e}}{\partial v'} =$$

$$\nabla^{\prime 2} A' = \left(\int f'_{\mathrm{e}} v' \,\mathrm{d}^{3} v' - \int f'_{\mathrm{i}} v' \,\mathrm{d} v'^{3} \right). \qquad \mu \equiv \frac{Zm}{Am_{\mathrm{i}}}$$

Scaling relations between both systems:

$$L_{2} = L_{1}\sqrt{\frac{n_{1}}{n_{2}}} \qquad t_{2} = t_{1}\frac{u_{1}}{u_{2}}\sqrt{\frac{n_{1}}{n_{2}}} \qquad T_{i2} = \frac{A_{2}u_{2}^{2}}{A_{1}u_{1}^{2}}$$
$$\tilde{E}_{2} = \tilde{E}_{1}\frac{u_{2}^{2}}{u_{1}^{2}}\sqrt{\frac{n_{2}}{n_{1}}} \qquad \tilde{B}_{2} = \tilde{B}_{1}\frac{u_{2}}{u_{1}}\sqrt{\frac{n_{2}}{n_{1}}}$$

F. Fiuza | May 8, 2019 | CTA symposium

= 0

e p

Weibel instability can amplify B-fields in weakly magnetized plasmas SLAC

Instability can transfer $\sim 10\%$ of kinetic energy of plasma flows into magnetic energy

E. S. Weibel, PRL 2, 83 (1959); B. D. Fried, Phys. Fluids 2, 337 (1959) A. Gruzinov & E. Waxman, APJ 511, 852 (1999); M. Medvedev & A. Loeb, ApJ 526, 697 (1999)

F. Fiuza | November 5, 2018 | APS

Good agreement between linear theory, simulations, and experiments

D. D. Ryutov et al., Physics of Plasmas (2014)

Dispersion relation for plasma with several ion components

$$\left[G_1\left(\frac{a_{3\alpha}\tilde{\Gamma}^2}{\tilde{k}^2}\right) - \frac{\tilde{k}^2}{\tilde{\Gamma}^2}G_2\left(\frac{a_{3\alpha}\tilde{\Gamma}^2}{\tilde{k}^2}\right)\right] = 0$$

$$\frac{d}{dv^2} \qquad G_1(y) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{y e^{-x^2}}{x^2 + y} dx \qquad G_2(y) = \frac{2y}{\sqrt{\pi}} \int_{-\infty}^{+\infty} \frac{x^2 e^{-x^2}}{x^2 + y} dx$$

Our measurements probe early non-linear development of instability

Shock formation requires larger interpenetration regions/higher density flows

C. Huntington, F. Fiuza et al. Nat. Physics (2015)

magnetization of 1%, consistent with astrophysical shocks

Kink deformation of filaments is due to resonant bouncing of ions

Davidson *et, al.*, Phys. Fluids **15**, 317 (1972); Milosavljevic *et, al.*, Astrophys. J. 641, 978 (2006) W. Daughton, JGR 103, 29 (1998)

• Most unstable '
$$\lambda_{ extsf{kink}}/2\pi$$
 the v_i/ω_B

1

 Growth rate given by typical attraction-time between bouncing ions

$$\Gamma_{\rm kink} \simeq \frac{\omega_{pi}\lambda_B}{4c} \frac{v_i}{\lambda_{\rm kink}} \simeq \frac{\omega_{pi}\lambda_B}{4c} \omega_{\rm bounce}$$

 Saturation when transverse kinetic ion pressure exceed magnetic pressure

$$n_i m_i (\delta r_{\perp}^{\text{sat}} \omega_{\text{bounce}} / \pi)^2 \sim B^2 / 2\mu_0 \Rightarrow \delta r_{\perp}^{\text{sat}} \simeq \pi \lambda_B / 4$$

F. Fiuza | May 8, 2019 | CTA symposium

SL/

Proton radiography data is consistent with 3D PIC simulations

2.0

5.5 ns

240 #

160

80

Initial analysis indicates isotropization of B-field energy at late times

SLAC

NIF experiments will study shock formation and particle acceleration

PI: F. Fiuza

These experiments can validate current models for shocks formation and particle injection

C. Huntington, F. Fiuza, et al, Nature Physics (2015); S. Ross et al, PRL in press (2017)

