

Optical and IR astronomy - and its relation to CTA GalacticRAVE Matthias Steinmetz

cherenkov

Science with the Cherenkov Telescope Array

"Traditionally, the overlap between optical/infrared (OIR) astronomy and gamma-ray astronomy has been considered to be fairly small."

- Dark Matter Programme
- Galactic Centre
- Galactic Plane Survey
- LMC Survey
- Extragalactic Survey
- Transients
- **Cosmic Ray PeVatrons** ullet
- Star Forming Systems
- Active Galactic Nuclei
- **Clusters of Galaxies**

cherenko

Science with the Cherenkov Telescope Array

"Traditionally, the overlap between optical/infrared (OIR) astronomy and gamma-ray astronomy has been considered to be fairly small."

- Galactic Plane Survey
- LMC Survey
- **Extragalactic Survey**
- Transients
- Cosmic Ray PeVatrons
- Star Forming Systems
- Active Galactic Nuclei
- **Clusters of Galaxies**

 Dark Matter Programme Galactic Centre

- Current Generation of 8m telescopes
- JWST
- ELTs
- Ground based survey like LSST (imaging) and 4MOST, DESI, WEAVE, SDSS (spectroscopic)

Space based surveys like Gaia, Euclid, and WFIRST

The main facilities & surveys

Gaia is rewriting stellar & Galactic evolution

- Detailed spectroscopy + astrometry (+ astroseismology) of large samples
- \implies precision samples with good masses, ages and abundances
- \implies stellar and Galactic evolution cannot be separated
- \implies affects binaries, SNR remnants ...
 - distance no longer a "fiddle" parameter
 - embedding into general stellar evolution history + chemical enrichment
- ⇒ Signatures of formation history can be found in the kinematics of the stellar system
 ⇒ new mass estimates for the Milky Way and
- ⇒ new mass estimates for the its satellite system

Gaia is rewriting stellar & Galactic evolution

MS & RAVE (2019)

6

Milky Way may be considerably less massive

Over the past 15 years:

- naive extrapolation from rotation curve gives $M_{MW}>2.5{\times}10^{12}~M_{\odot}$
- spectroscopic surveys (RAVE, SEGUE) modelling the overall velocity distribution $M_{MW} > 1 1.5 \times 10^{12} M_{\odot}$
- recent Gaia data taking into account the local velocity distribution reveals considerable anisotropy

 $\implies M_{\rm invite} \approx 1012 \, \rm M_{\odot}$

Cosmic ray acceleration in SNRs

3D simulation with cosmic ray acceleration depending on magnetic obliquity (Pais, Pfrommer+ 2019)

Gaia distances help breaking parameter degeneracies of hadronic and leptonic models

Simulation

H.E.S.S. Observation

SN1006 (top) expands into homogeneous field, Vela Jr. (bottom) expands into a turbulent field

Neutron star in SNR 1E0102.2-7219 in the SMC

Chandra

MUSE@VLT

Roth et al. 2018, A&A 618, A3

(e) 0.75"

Summary (from 9 hrs exposure time)

	а	b	С	d12	e1	i	j	
Seeing	0.7"	1.2"	1.0"	0.8"	0.75"	0.6"	0.85"	
PN	5	7	6	4	9	3	2	36
PN candidates	4	0	0	1	4	0	0	9
HII regions	10	11	5	13	4	13	5	61
cHII regions ¹⁾	8	4	5	19	5	2	8	51
SNR	14	5	3	5	3	6	2	38
emStars ²⁾	18	4	4	15	30	40	7	118
bgr. Galaxies ³⁾	4	3	1	6	2	8	4	28
Stars ⁴⁾	445	77	152	265	299	517	91	1846

1) compact HII regions

- 2) emission line stars

3) background galaxies4) stars with spectral type

MUSE data locations

MUSE Ha maps

MUSE Ha maps

MUSE Ha maps

~1.5h depth \rightarrow 1 σ ≈3×10⁻²⁰ erg s⁻¹cm⁻²pix⁻¹

Weilbacher, MS et al (2018)

=7.5×10⁻¹⁹ erg s⁻¹cm⁻²□"

Velocities

MHD galaxy simulation with cosmic rays

CR diffusion launches powerful winds (Pakmor, Pfrommer+ 2016) Simulation without CR diffusion exhibits only weak fountain flows

Cosmic rays in cosmological simulations

Fiducial cosmological simulations: AURIGA MHD simulations (Grand+ 2017)

Cosmic rays in cosmological simulations

Fiducial cosmological simulations: AURIGA MHD + CR simulations (Buck, Pakmor, Pfrommer+)

The Hubble Deep Field South, seen by MUSE

Hubble:

MUSE:

Urrutia, MS et al (2018)

MUSE redshifts for emission-selected objects: 1163

Ly- α haloes around individual galaxies at z>3 are ubiquitous!

Wisotzki, MS et al (2016)

Growth curves of Lyman-a haloes in MUSE deep data

Already from individual z>3 sightlines: $\approx 50\%$ at SB > 10⁻¹⁹ erg s⁻¹ cm⁻² arcsec⁻²

.

Redshift evolution of dn/dz in Lya emission ... and in HI absorption

Studying the CGM in emission and in absorption

To combine diagnostics we have to measure N(HI) for known Ly_{α} haloes of high-z galaxies.

 \rightarrow absorption spectra of back–ground galaxies close to LAEs!

Not feasible with MUSE! typical $m_{AB} \approx 26 \dots 28$

E-ELT + MOS can do this! (science case related to IGM) tomography, but on scales of 10–100 kpc)

		н	1	
	M	M		
M	M	M	No	
	M	A.	N.	

LSST in one sentence:

An optical/near-IR survey of half the sky in ugrizy bands to r~27.5 based on ~1000 visits over a 10-year period:

A catalog of 20 billion stars and 20 billion galaxies with exquisite photometry, astrometry and image quality!

LSST: a digital color movie of the Universe...

3.6x10⁻³¹ erg/s/cm²/Hz 36 nJy

More information at www.lsst.org and arXiv:0805.2366

Mar 10, 2019

First light: 2020

LSST From the User's Perspective: A Data Stream, a Database, and a (small) Cloud

Prompt Data Products

- event distribution networks within 60 seconds of observation.
- A catalog of orbits for ~6 million bodies in the Solar System.

Yearly Data Releases

- through online databases.
- Deep co-added images. —

User Contributed Data Products

- custom processing and analysis.
- Software and APIs enabling development of analysis codes.

- A stream of ~10 million time-domain events per night, detected and transmitted to

- A catalog of ~37 billion objects (20B galaxies, 17B stars), ~7 trillion single-epoch detections ("sources"), and ~30 trillion forced sources, produced annually, accessible

- Services and computing resources at the Data Access Centers to enable user-specified

Instrument Specification

Specification	Des			
Field-of-View (hexagon)				
Multiplex fiber positioner				
Medium Resolution Spectrographs (2x) # Fibres Passband Velocity accuracy	R~40 812 370 < 1			
High Resolution Spectrograph (1x) # Fibres Passband Velocity accuracy	R~20 812 392 < 1			
# of fibers in Ø=2' circle	>3			
Fibre diameter	Ø=1.			
Area (first 5 year survey)				
Number of science spectra (5 year)				

ign value

- degree² (ø>2.6°)
-)
- 000–7500
- 2 fibres (2x)
-)-950 nm
- km/s
- 0,000
- 2 fibres
- 2.6–435.5 nm, 516–573 nm, 610–679 nm km/s
- .45 arcsec x 18,000 deg² million of 20 min

4MOST Science Themes

R>5000 spectra over the full optical range

Galactic Archeology Gaia and PLATO

Galaxy evolution VST/VISTA

Cosmology Euclid/LSST/SKA

4MOST Operations

- Unique operations model for MOS instruments suitable for most science cases 4MOST program defined by Public Surveys of 5 years
- Surveys will be defined by Consortium and Community
- All Surveys will run in parallel: Surveys share fibres per exposure for increased efficiency Consortium Key Surveys will define observing strategy
- - Millions of targets all sky
 - Fill all fibres
- Add-on Surveys for smaller surveys
 - Small fraction fibers all sky or
 - dedicated small areas
 - 10^3 to 10^6 targets
- Several passes of sky with 2, 10, 20, 30
- Wedding-cake distribution for total time 1h to 10h

Opportunity to get spectra of some 10k objects spread over large areas of the sky

Summary and conclusions

- Gaia is rewriting stellar and Galactic evolution implication of late stages of stellar evolution and dark matter
- source
- Detailed spatially resolved analysis of interplay of galaxy formation, feedback and cosmic rays throughout cosmic evolution
 - Follow-up with large imaging and spectroscopic surveys

 Spatially and spectroscopically resolved analysis of the hosts of y-ray sources in the Galactic plane and (nearby) extragalactic

