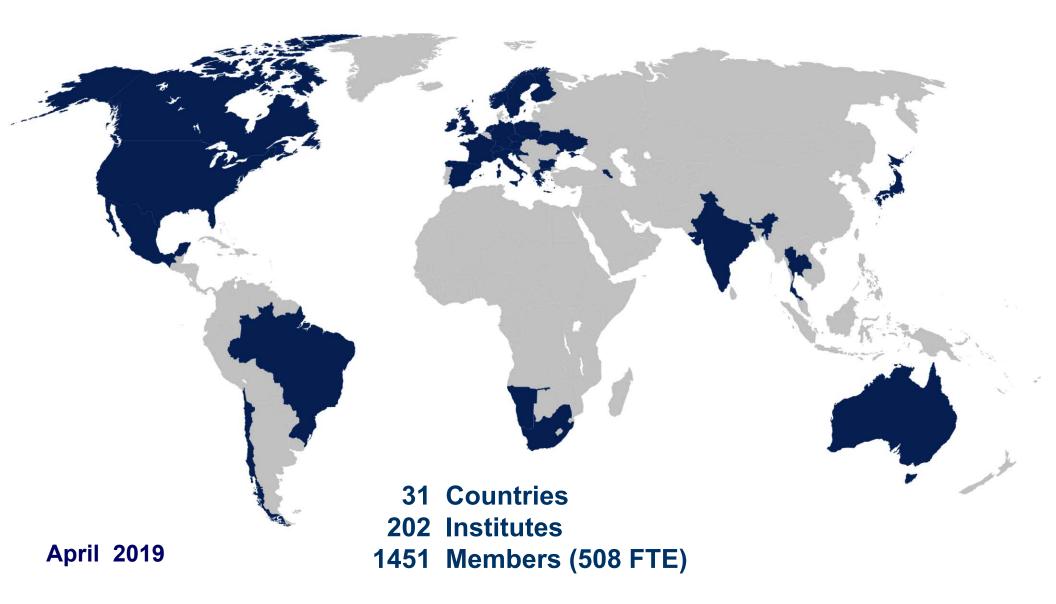


Exploring the High-Energy Universe with

Introduction to Key Science Projects & Particle Acceleration in CTA


The CTA Consortium¹, represented by Rene A. Ong²

¹See https://www.cta-observatory.org/consortium_authors/authors_2019_05.html ²University of California, Los Angeles, CA 90095, USA

CTA Consortium

cherenkov telescope array

We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments

Outline

CTA Key Science Project (KSPs)

Concept & Formulation Introduction to the (9) KSPs

CTA Survey KSPs

Galactic Plane Survey, Galactic Centre, and Extragalactic Survey, (LMC Survey)

Particle Acceleration in CTA

PeVatron and Star Formation Systems KSPs

Summary

Caveat: Not able to cover in detail all of the CTA KSPs

CTA Main Scientific Themes

Cosmic Particle Acceleration

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

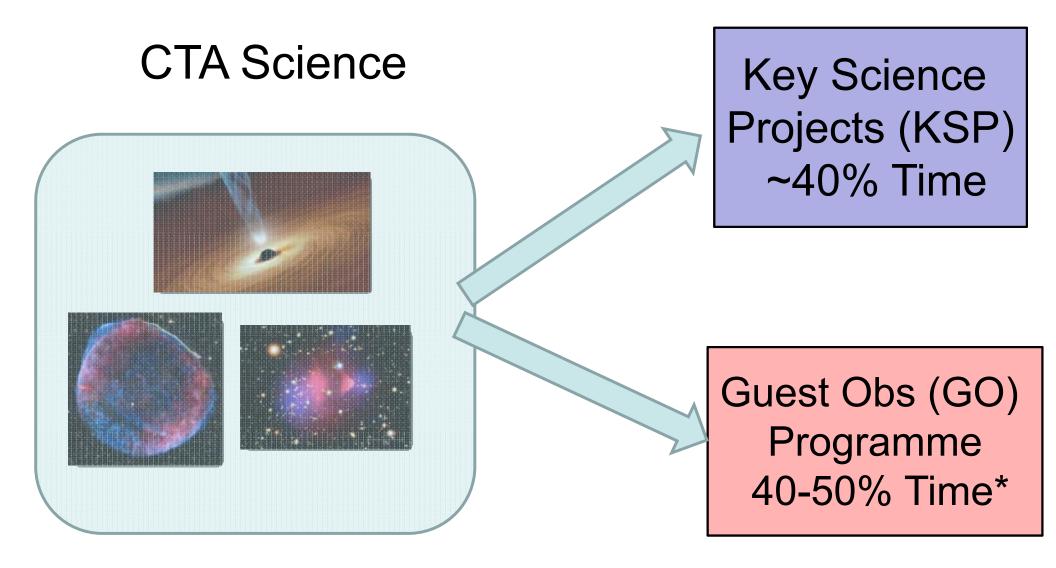
Explore origin and role of relativistic particles

Probing Extreme Environments

- Processes close to neutron stars and black holes
- Processes in relativistic jets, winds and explosions
- Exploring cosmic voids

cherenkov

telescope array


Physics frontiers – beyond the Standard Model

- What is the nature of Dark Matter? How is it distributed?
- Is the speed of light a constant for high-energy photons?
- Do axion-like particles exist?

See S. Sarkar "New Physics in Key Science Projects"

CTA Main Scientific Themes

*Remaining is reserved host time (country, ESO)

cherenkov

telescope array

KSP Concept

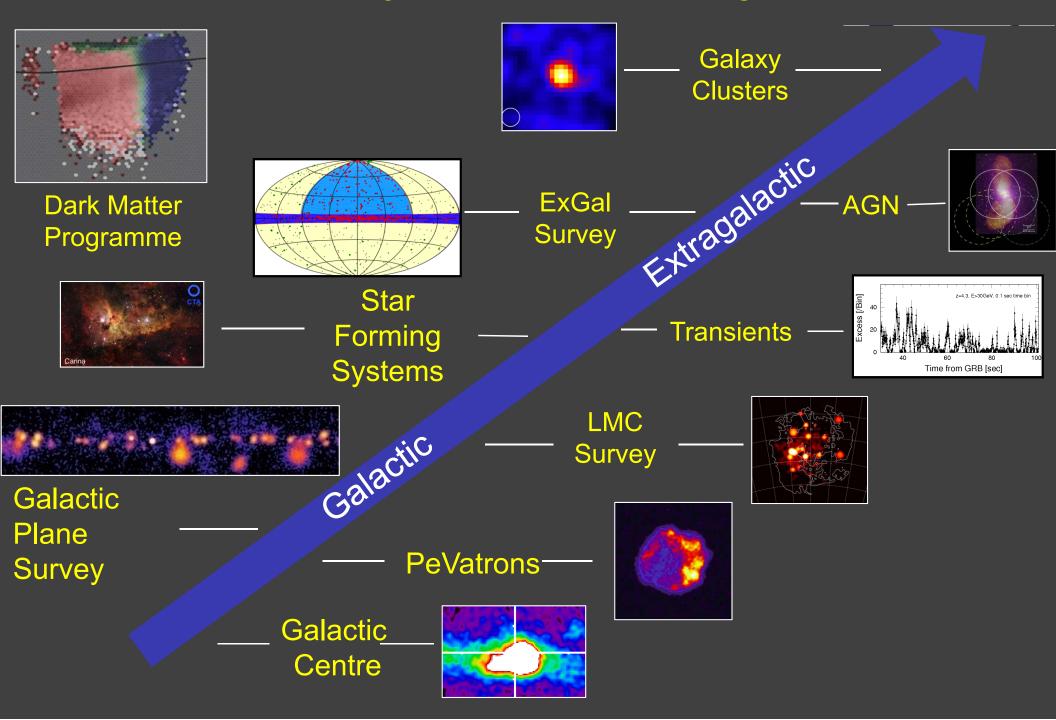
cherenko telescope array

Concept

- Providing major insight into one or more physical problems through deep observations or sets of combined observations
- Major observational programmes (e.g. surveys), difficult to achieve in GO programme
- Maximize scientific return with early key science provide "legacy" results and seed GO programme
- Logical mapping to CTA science themes
- Needing Consortium leadership critical expertise with Cherenkov technique and analysis methods
- All data on public archive after proprietary period (of ~1 year)

KSP Development

KSPs developed via lengthy and rigorous process with input from many people


CTA Consortium: PHYS and MC/ASWG work packages

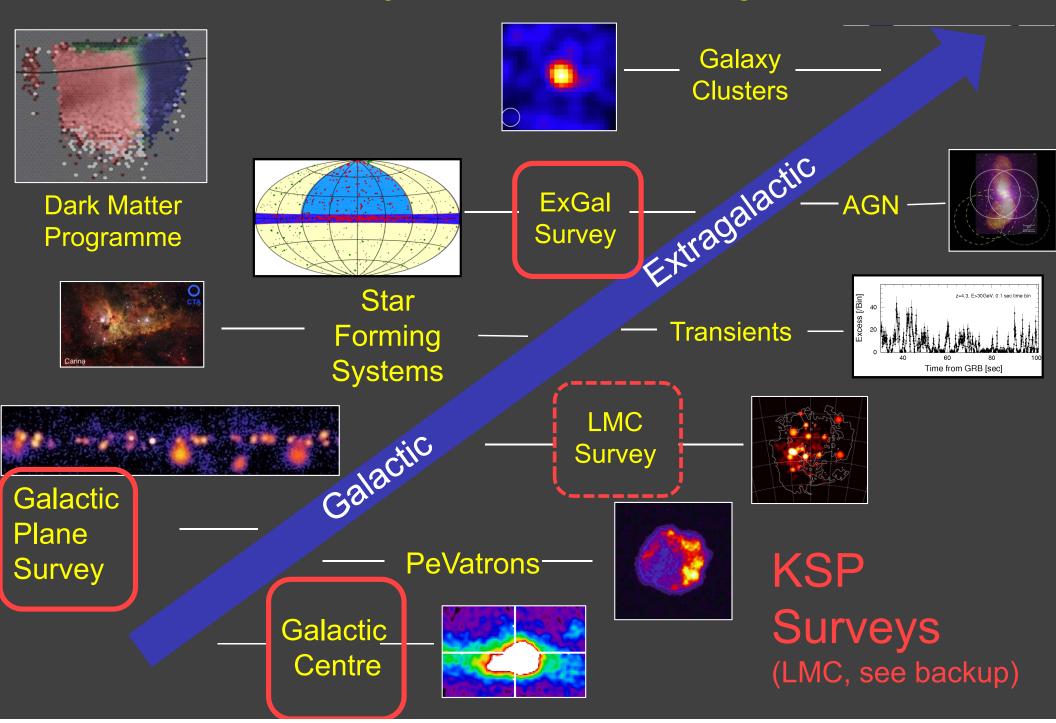
2008 201	2 2016	2020	2024	2028	
Formulation	Completion	Refinem	ent	Execution \rightarrow	
		Science with the Cherenkov Telescope Array			

CLC cherenkov telescope array

Key Science Projects

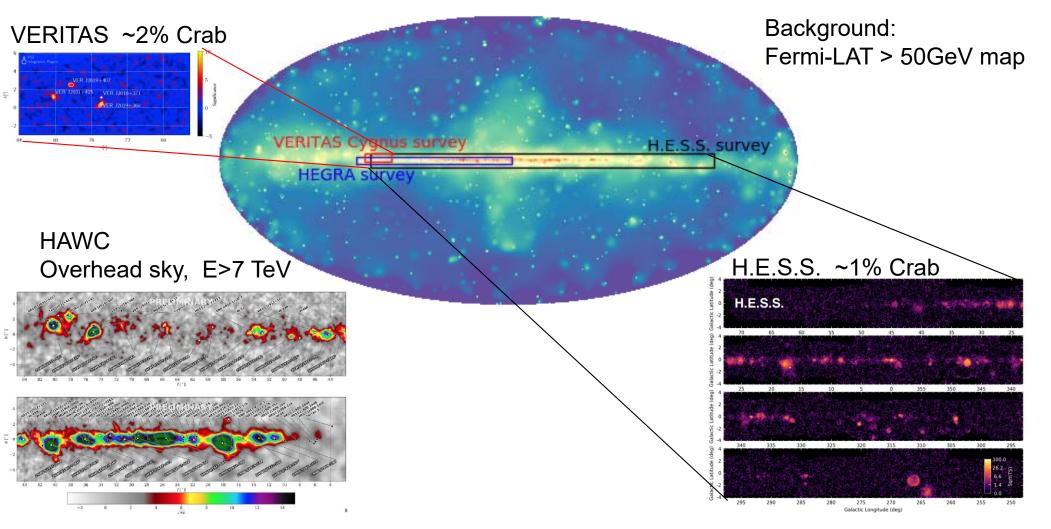
CTA Key Science Projects

Science Themes $\leftarrow \rightarrow$ KSPs


Mapping of Science Themes to KSPs

- Each theme/question is addressed by multiple KSPs
- Each KSP addresses multiple questions

		Theme		Question	Dark Matter Programme	Galactic Centre Survey	Galactic Plane Survey	LMC Survey	Extra- galactic Survey	Transients	Cosmic Ray PeVatrons	Star-forming Systems	Active Galactic Nuclei	Galaxy Clusters
cta entries		Understanding the Origin and Role of Relativistic Cosmic Particles	1.1	What are the sites of high-energy particle acceleration in the universe?		~	~~	~~	~~	~~	~	v	~	~~
Science with the	, C		1.2	What are the mechanisms for cosmic particle acceleration?		~	~	•		~~	~~	~	~~	
Cherenkov Telescope			1.3	What role do accelerated particles play in feedback on star formation and galaxy evolution?		~		•				~~	~	۲
Array			2.1	What physical processes are at work close to neutron stars and black holes?		v	~	~			~~		~~	
. It. 1	2	Probing Extreme Environments	2.2	What are the characteristics of relativistic jets, winds and explosions?		~	~	~	~	~~	~~		~~	
T 10			2.3	How intense are radiation fields and magnetic fields in cosmic voids, and how do these evolve over cosmic time?					~	~			~~	
			3.1	What is the nature of Dark Matter? How is it distributed?	~~	~~		v						*
	з Е	Exploring Frontiers in Physics	3.2	Are there quantum gravitational effects on photon propagation?						~~	~		~~	
1			3.3	Do Axion-like particles exist?					~	~			~~	


The Cherenkov Telescope Array Consortium, Science with the Cherenkov Telescope Array (World Scientific Publishing, 2019), ISBN 978-981-3270-08-4, arXiv: 1709.07997, DOI: 10.1142/10986

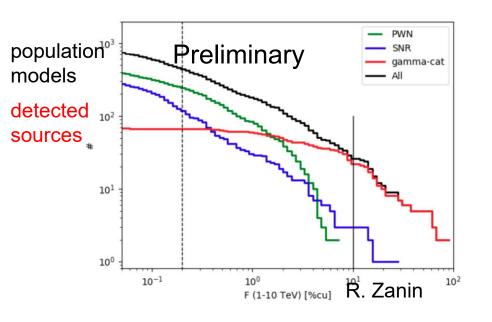
CTA Key Science Projects

Galactic Plane Survey (GPS)

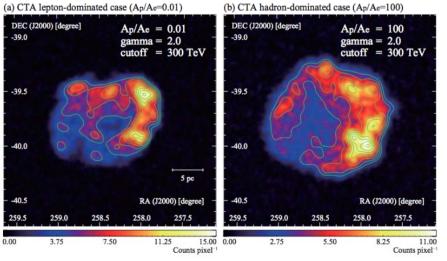
Previous plane surveys with VHE gamma rays:

cherenkov

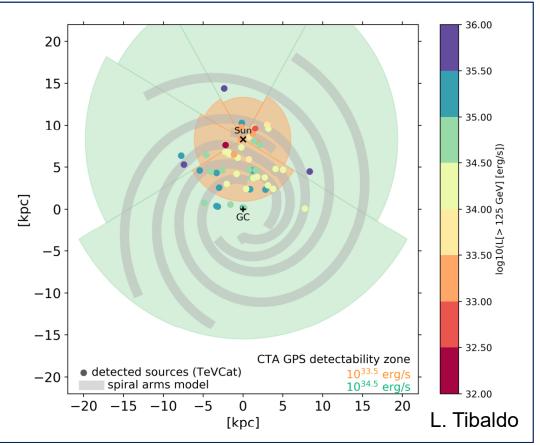
telescope array


- Previous work important, but at medium sensitivity and at high E
- Need for a full plane survey at high sensitivity and high resolution

Galactic Plane Science


cta

cherenkov telescope array


Population Studies

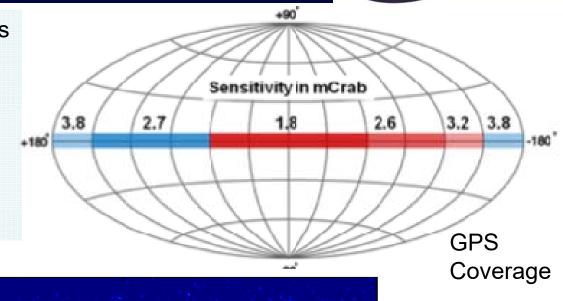
Precision Morphology

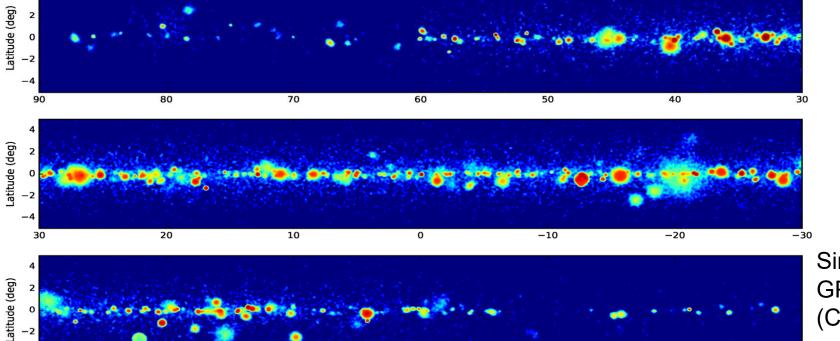
Reaching the entire Galaxy

See L. Tibaldo "Survey of the Galactic Plane with the Cherenkov Telescope Array" (poster)

RXJ 1713-3946

CTA Consortium ApJ 840, 74 (2017)


GPS Plan & Attributes


cherenkov telescope array

- First high sensitivity survey at TeV energies
- Full-plane survey at arc-minute resolution
- Expect many100's of new sources: e.g. PWNe, SNRs and binaries
- Detailed view of diffuse γ-ray emission:
 MWL information of high importance
- Great potential for new discoveries !

320

330

300

Longitude (deg)

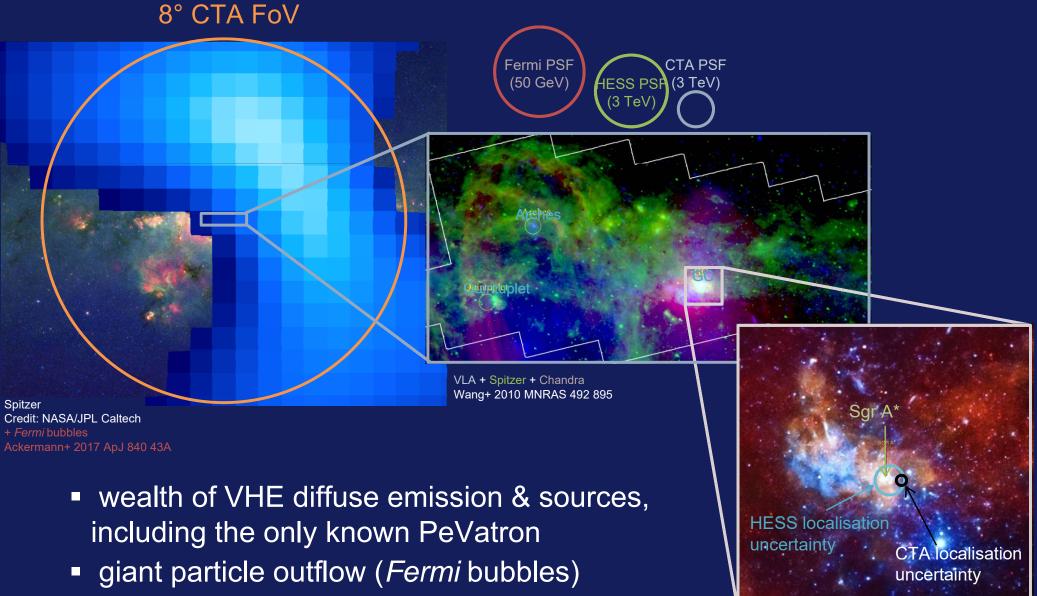
290

280

310

Simulated GPS Skymap (CTAC)

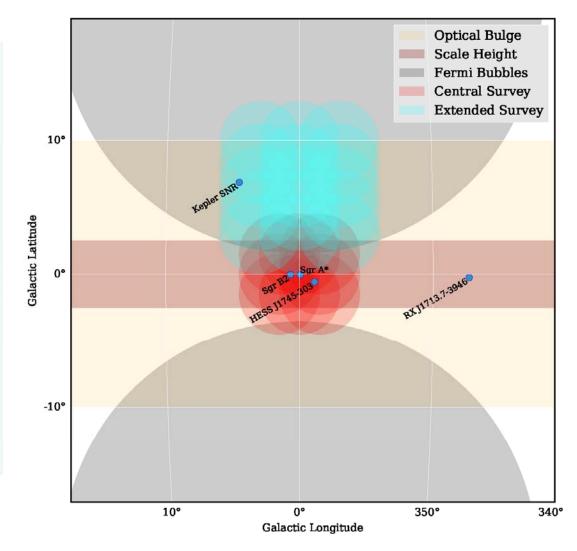
270


Galactic Centre with CTA

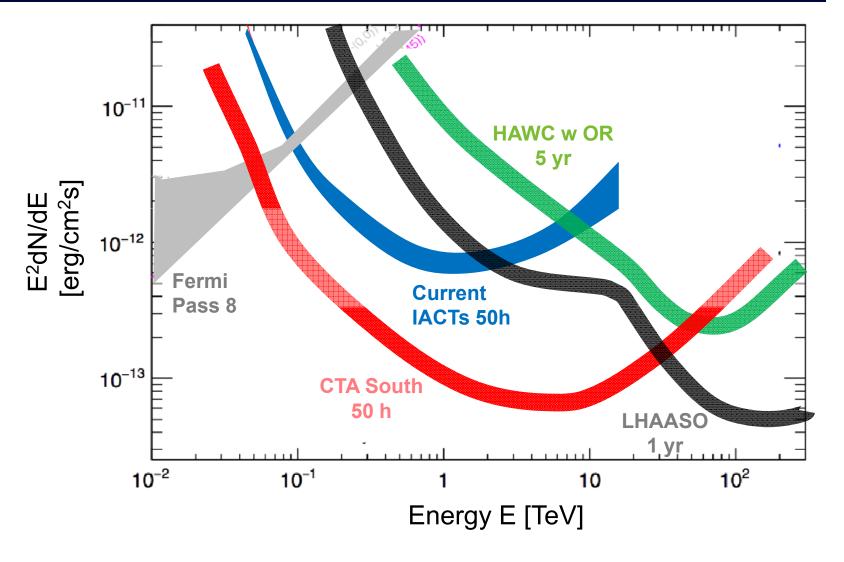
cherenkov telescope array

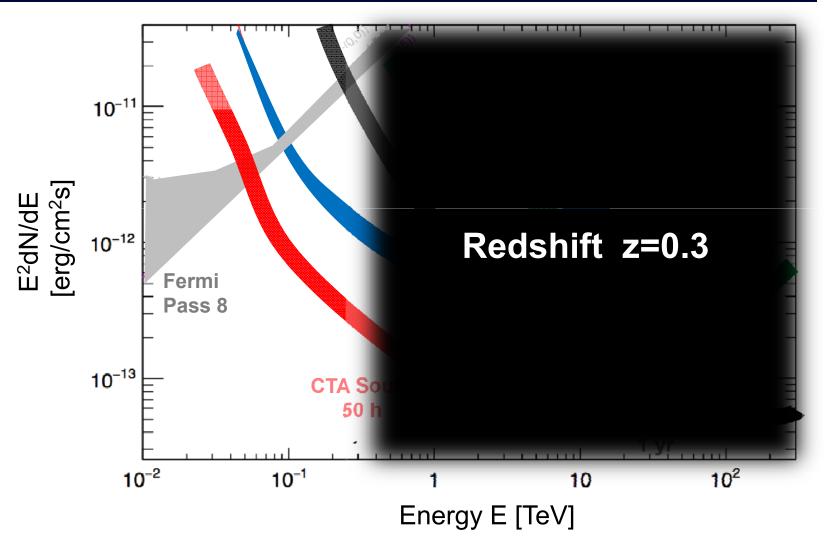
Slide courtesy of L. Tibaldo

AY FROM CHANDRA

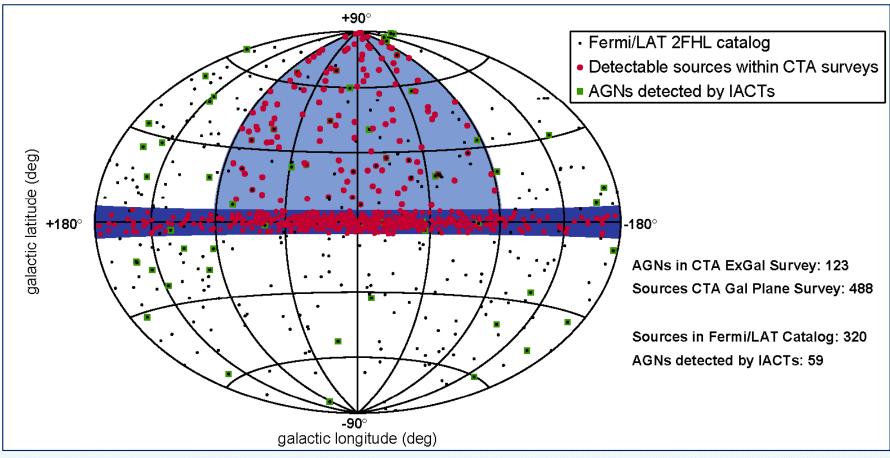


ideal region for dark matter searches

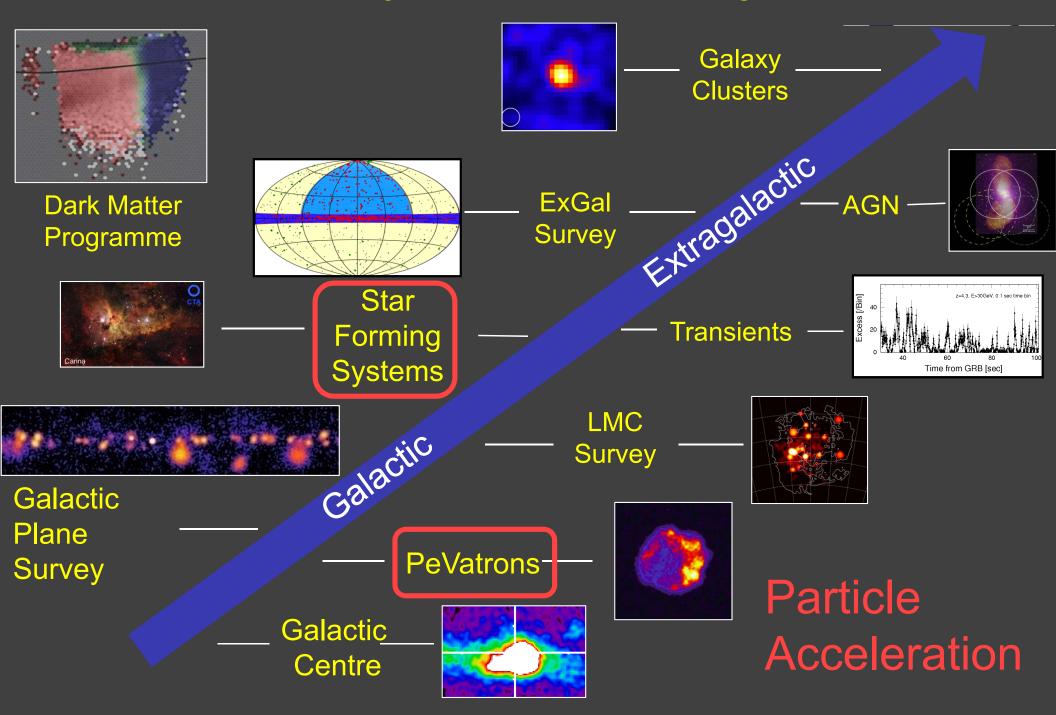

Galactic Centre Survey


First 3 years: deep survey of central region (525h, in addition to GPS exposure)

- Later: an extended survey out to 10° (300h)
- Observing plan to be optimized based on CTA characteristics and MWL perspective



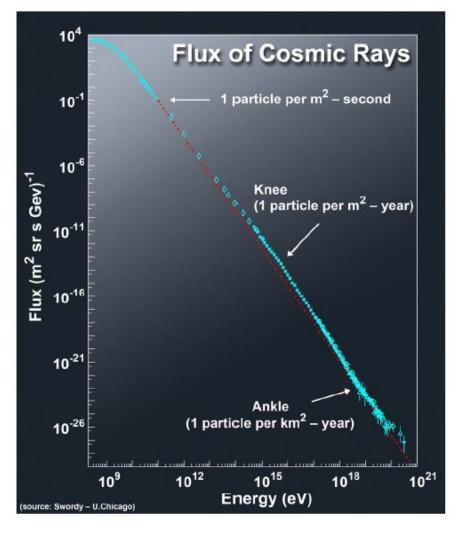
- Large gap in E not covered by any sensitive instrument
- Precisely where most extragalactic sources lie
- Survey designed to cover this gap over large portion of the sky


ö All blazars **10**⁻¹¹ **BL Lacs FSRQs** 0.01 Unabsorbed Absorbed E²dN/dE erg/cm²s V(>S) [deg⁻² 10-3 10⁻¹² **Fermi** 104 Pass 8 CTA ~current extragalactio IACT survey sensitivity sensitivity 10⁻¹³ limit limit CTA S ^φ **1**0⁻¹² 50 10-11 10-10 VHE gamma-ray flux (E>100GeV) [ph cm⁻²s⁻¹] **Expected AGN source** 10⁻² 10⁻¹ Energy E [TeV] density @ 5mCrab

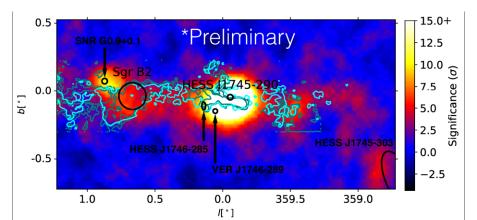
- Large gap in E not covered by any sensitive instrument
- Precisely where most extragalactic sources lie
- Survey designed to cover this gap over large portion of the sky

- Survey of ¼ sky to limiting sensitivity of 5 mCrab
- Unbiased determination of blazar luminosity function
- EGal Survey connects to Galactic Plane Survey & covers Coma, Virgo, Cen A, & Fermi bubbles (N)
- Wide-survey: excellent for transients and something unexpected !

CTA Key Science Projects



PeVatron KSP



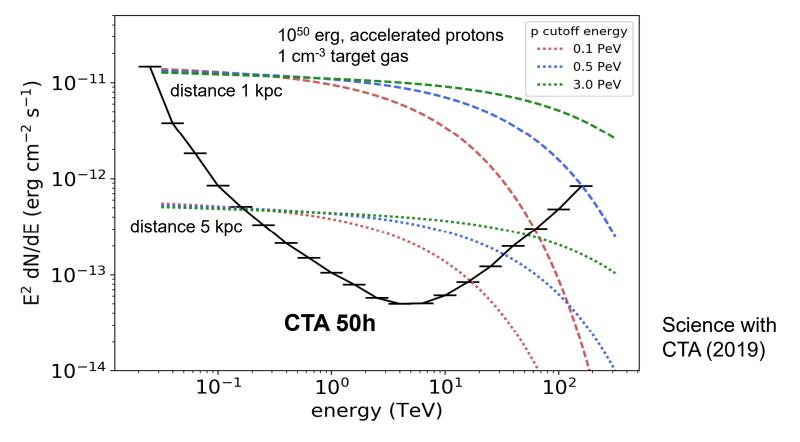
cherenkov telescope array

Q: What sources accelerate hadrons to the knee?

- CR origin: ~100 year old mystery !
- Standard picture: shock-accel. in SNRs – satisfies power & spectrum
- BUT: only a few SNRs provide good evidence for hadronic acceleration & only up to ~10-20 TeV

Evidence for PeVatron near GC (H.ES.S., VERITAS) → Probably not powerful enough, by itself

PeVatron KSP

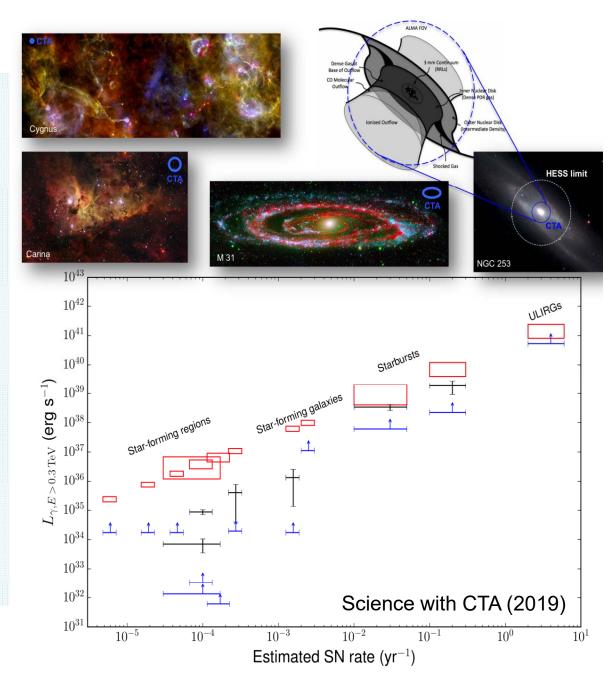


cherenkov telescope array

Search for PeVatrons via the > 100 TeV spectrum

- Use GPS as finder and follow-up (5) brightest sources with no cutoff
- Electrons' emission suppressed above 100 TeV (Klein-Nishina)
- MWL information critical for identification

Comparison of spectra with CTA sensitivity (50h)



Star Forming Systems KSP

cherenkov telescope array

Key Questions:

- How do CRs propagate and what is their impact on the ISM?
- What is the relation between star formation (SF) and particle acceleration in systems of all scales?
- Methodology: deep observations of a set of characteristic objects at different scales.
- Motivated by connections seen in FIR, GeV γ -rays and, now TeV γ -rays.

Summary

cherenkov telescope array

• CTA will usher in a new era in VHE Astrophysics

Rich science program addressing many pressing questions Great opportunity for discovery of something new !

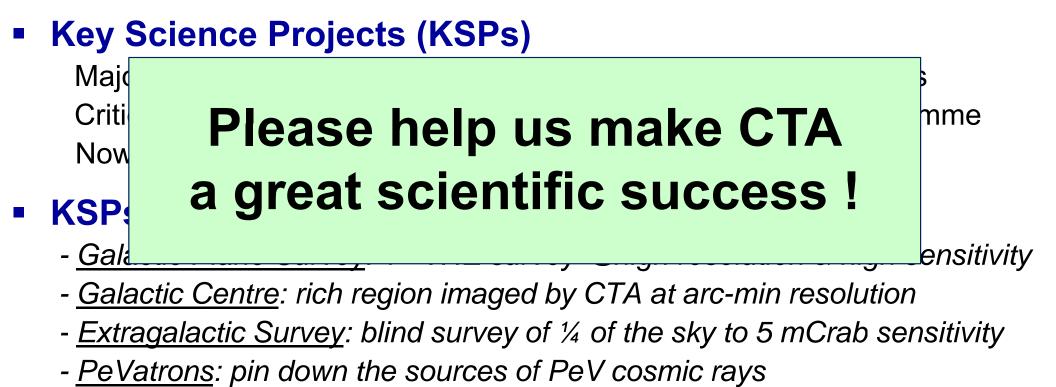
Key Science Projects (KSPs)

Major legacy projects, formulated by Consortium over many years Critical effort to produce long-lasting results and seed GO Programme Now time to foster links to broader MWL/MM communities

KSPs reviewed here:

- <u>Galactic Plane Survey</u>: 1st VHE survey @high resolution & high sensitivity
- Galactic Centre: rich region imaged by CTA at arc-min resolution
- Extragalactic Survey: blind survey of ¼ of the sky to 5 mCrab sensitivity
- <u>PeVatrons</u>: pin down the sources of PeV cosmic rays
- <u>Star Formation Systems</u>: study relation between CRs and SF on all scales

*We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments


Summary

cherenkov telescope array

• CTA will usher in a new era in VHE Astrophysics

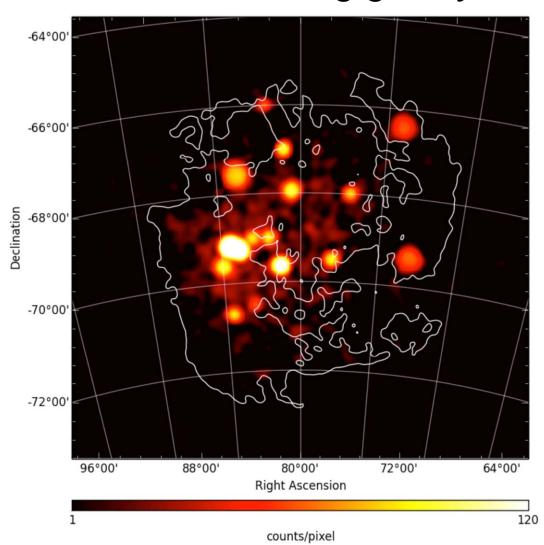
Rich science program addressing many pressing questions Great opportunity for discovery of something new !

- Star Formation Systems: study relation between CRs and SF on all scales

*We gratefully acknowledge financial support from the agencies and organizations listed here: http://www.cta-observatory.org/consortium_acknowledgments

BACKUP

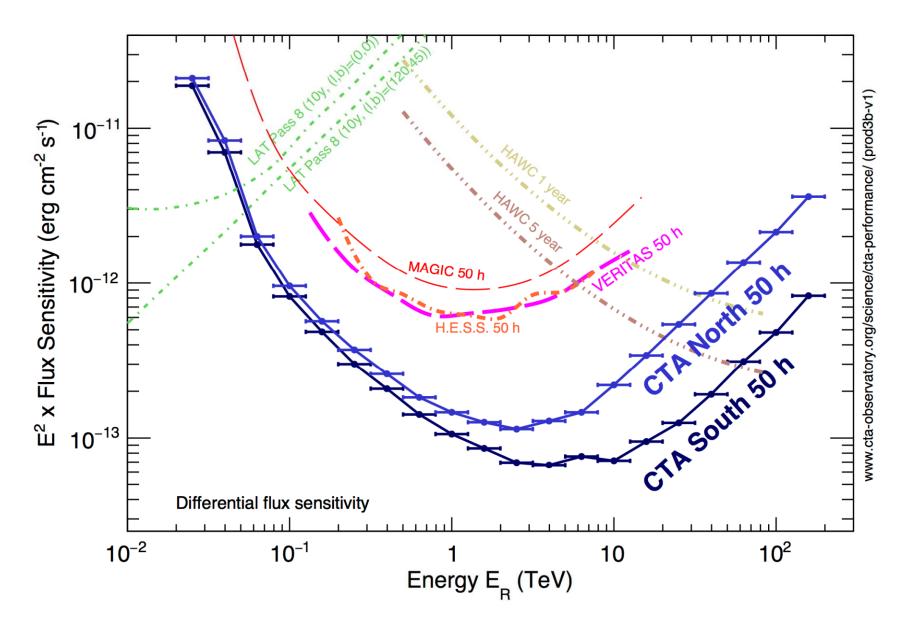
Large Magellanic Cloud Survey



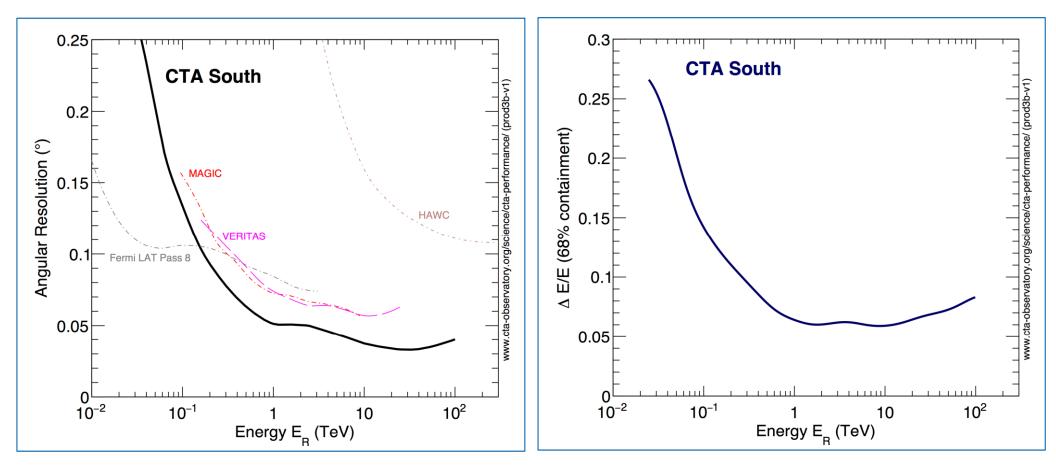
340h deep survey of the galaxy +150h monitoring of SN1987A Deep and resolved external view of a star-forming galaxy

Scientific objectives

- Particle acceleration in young and powerful objects (SN1987A, 30 Dor C, LMC P3,...)
- Early stages of the cosmicray life cycle in connection with galactic properties


Will complement the view offered by the GPS and SFS KSPs

Flux Sensitivity



cherenkov telescope array

Major sensitivity improvement & wider energy range

Angular & Energy Resolutions

Important for resolving morphology of sources

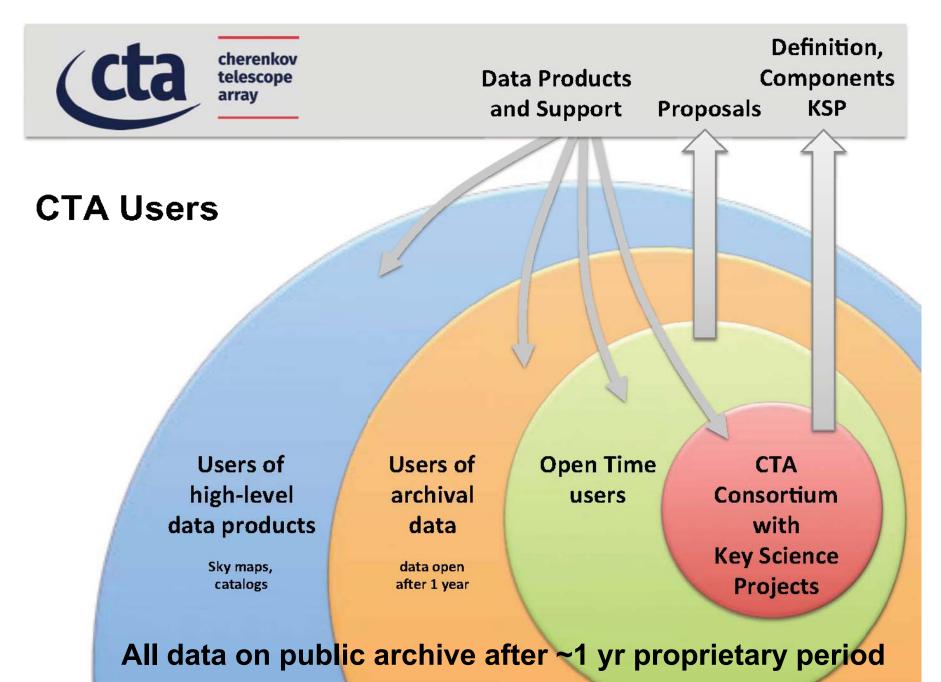
Important for spectral precision

cherenkov

telescope array

(CLA

Science with the Cherenkov Telescope Array


CTA Science Program

- Open observatory
- Proposals for Guest Observer Programme – essential for major community involvement
- All data on public archive after proprietary period (typically 1 year)
- ~40% time in Key Science Projects (KSPs), carried out by CTA Consortium

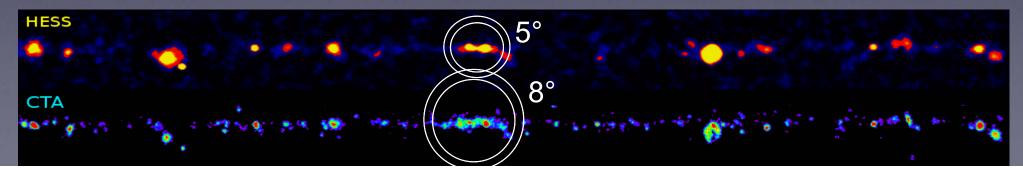
KSPs described in Science with CTA document arXiv:1709.07997 (published as a book by World Scientific)

CTA: An Open Observatory

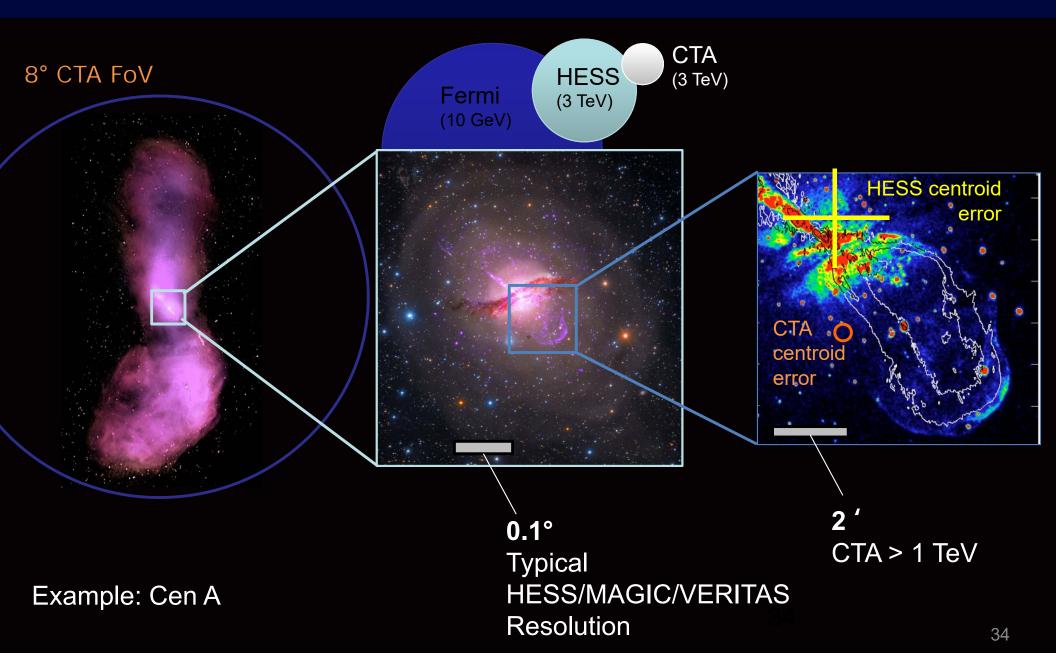
Galactic Discovery Reach

Young pulsars and SNRs

 have typical brightness such that current instruments can see only relatively local objects


CTA will see whole Galaxy

Current Galactic VHE sources (with distance estimates) HESS/


VERITAS

CTA

Survey speed: x300 faster than current instruments

Angular Resolution

Important MWL/MM Synergies

.0

a.

×.

.0

-**n**-

.а.

. 🕰

- K

. 6

. 1

cherenkov telescope array

cta

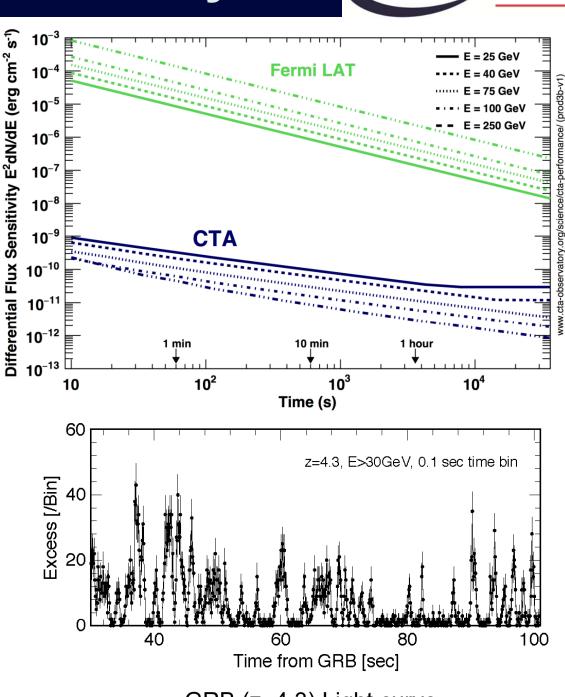
. 6.

3074	2020	2010	307.	2010	2012	2020	2022	2024	2025	2024	2025
	CTA F	rototypes	⇒			Science V	erification \Rightarrow	User Oper	ation)
Low Fred	uency Rad	io									
LOFAF							:		:	:	
MWA	•		MWA	(upgrade)		1	:	:	:	:	
	VLITE on J	VLA		(~2018? LOI	BO)	· · · · ·					
Mid-Hi Fr	equency R	adio	(FAST							
JVLA	VLBA, eMerl	in, ATCA, EV	N, JVN, KV	N, VERA, LI	BA, GBT0	nany other sm	aller facilities)	•		, ,
ASKAI)		:	:	:	
Kat 7	> MeerKAT -	-> SKA Phase	1								
	at an Davi					(SKA)	1&2 (Lo/Mid))
	meter Rad	IO IT, IRAM, NO	CRAA CRAA	CHET OTT	Nameson 2 Bills	Noberna		there must leave	(in a life or)	:	
ALMA		II, IKAWI, NO	EAVLA, SIVLA	, SWI1, SP1,	Nantenz, wit	pra, Nobe yar	na (maily o	uler smaller	lacinues)		
	(EHT	úrrototy	pe —> full o	nus)							
					:	:	:	:	:	:	:
		actories/Tra				<u> </u>					
	ar Transient I ARRS1 —> Pa		-> (~2017)	Zwicky TF			T (buildup to t	full survey n	node)		
Pansin	AKKOT -> P		GEM (Mee	rlicht single (dish prototyp	e in 2016)					
Queinalas			:	:		;				i i	
	R Large Fa		:	:	:	:	:	:	:	:	
ULT, K	eck, GTC, Ge	emini, Magella	л(талу о	ther smaller	facilities)			1			WFIRST
- 151	:	:	:	-: (JWST					`	(GMT
X-ray							(eE	LT (full ope:	ration 2024)	& TMT (time)	time less clear)?
	incl. UV/optic	al)					<u> </u>				
Swift (XMM	& Chandra	al)	•	•	•	•				····	
Swift (& Chandra R		•	•		•	(IXPE				
Swift (XMM	& Chandra R	al) ASTROSAT			•	•	IXPE]			ATHENA (2028
Swift (XMM	& Chandra R)	-		
Swift (XMM	& Chandra R			ER) SITA	·) MI			
Swift (XMM 4 NuSTA	& Clandra) SITA		(XARI		ma-ray + opt		AT HENA (2028
Gamma-r	& Clandra			ER) SITA	•	(XARI		ma-ray + opt)) ical ground e)	AT HENA (2028
Gamma-r	& Chandra .R ay GRAL			ER) SITA		(XARI		ma-ray + opt		AT HENA (2028
Gamma-i	& Chandra .R ay GRAL	ASTROSAT		ER) SITA :		(XARI		ma-ray + opt		AT HENA (2022 ements)
Gamma-i	& Chandra R ay GRAL			ER			(XARI		ma-ray + opt		AT HENA (2022 ements)
Gamma-i	& Chandra .R ay GRAL HAWC	ASTROSAT		ER) SITA : (LHAAS		(XARI		ma-ray + opt		AT HENA (2028 ements)
Gamma-I	& Chandra R ay GRAL HAWC Ves	ASTROSAT		ER (eROS		(upgrade t	(XARI	ci. soft gam	ma-ray + opt		AT HENA (2022 ements)
Gamma-r	& Chandra R GRAL HAWC Ves	ASTROSAT		ER (eROS		(upgrade t	(XARI	ci. soft gam	ma-ray + opt		AT HENA (2028 ements)
Gamma-I	& Chandra R GRAL HAWC Ves	ASTROSAT DAMPE	NICI	ER (eROS 8GO (2017)		(upgrade t	(XARI	ci. soft gam	ma-ray + opt	ical ground e	AT HENA (2028 ements)
Gamma-r	& Chandra R GRAL HAWC Advance	ASTROSAT DAMPE		ER (eROS RGO (2017)		(— upgrade t RA	(XARI	ci. soft gam	ma-ray + opt	ical ground e	AT HENA (2028 ements)
Gamma-r	& Chandra R ay GRAL HAWC Ves Advance S	ASTROSAT DAMPE	Wanced VIR	ER (eROS RGO (2017)		(— upgrade t RA	(XARI (SVOM (in o include LIG	ci. soft gam	ma-ray + opt	ical ground e	ements)
Gamma-r Gamma-r INTE Fermi Grav. Wa	& Chandra R GRAL HAWC Advance	ASTROSAT DAMPE ed LIGO + Ac	Manced VIR e (SINCE 20 [KM3NE]	ER (eROS RGO (2017) (11) (-1	LHAAS (KAG	(— upgrade t RA	(XARI (SVOM (in o include LIG	ci. soft gam	ma-ray + opt	ical ground e	ements)
Gamma-r	& Chandra R ay GRAL HAWC Ves Advance S	ASTROSAT DAMPE edLIGO + Ac IceCub	Manced VIR e (SINCE 20 [KM3NE]	ER (eROS CGO (2017) (11) (-1 (-1) (-1) (-1) (-1) (-1) (-1)	LHAAS (KAG	(— upgrade t RA	(XARI SVOM (in SVOM (in o include LIG : : : : : : : : :	ci. soft gam	ma-ray + opt	ical ground e	ements)

Caveat: Observatory timelines are very uncertain; this represents a notional picture based on available information

CTA as a Transient Factory

Advantages:


over Fermi and HAWC in energy range of overlap for ~min to ~ day timescales:

- Explosive transients (e.g. GRBs, GW events, etc.)
- AGN flares
- γ–ray binaries

Disadvantages:

- Limited FoV (more focused on follow-ups)
- Prompt reaction is critical

CTA capabilities → Key Science Project devoted to Transients

cherenkov

telescope array

GRB (z=4.3) Light curve