Muon Calibration in CTApipe CTA Calibration Meeting , 04/10/17 A. Mitchell, MPIK #### **CTA Muon Calibration** - Telescope / Camera teams must: - Be able to trigger on incoming muons - Flag candidate muon events - i.e. perform muon preselection - Telescope / Camera teams may: - Develop algorithms for internal use - Perform own simulations e.g. with degraded efficiency - BUT: all telescopes will be calibrated by the same analysis and calibration chain. - Muon software of teams beyond pre-selection will NOT be used in standard muon calibration → ctapipe ### Muon Calibration Algorithms - Many algorithms exist and are currently in use - Ideally, one algorithm for all telescopes / cameras - Which one should be used? - The one that performs the best! - How to know? Compare algorithms on figures of merit in same software framework → ctapipe - Recommend: If you think an algorithm could be *the one*, it should be implemented in ctapipe ## Muon Calibration (reconstruction) - Flagged candidate muon events enter. Two step procedure: - Circle fitting - Chaudhuri-Kundu analytical solution → implemented - Chernov-Osokov analytical solution - Hough Transform - Karimäki chi-square fit - Taubin fit - Kasa method - Intensity fitting - Chi-square fit to 1D profile - Chi-square fit to 2D image - Pixel-wise Log-likelihood fit to 2D image → implemented - Per event fit parameters stored ### Storage Classes: MuonRingParameter - Container classes in io/containers.py - After ring/circle fitting, store parameters: - run_id, event_id, tel_id, inputfile - ring_center_x, ring_center_y, - ring_radius - ring_phi, ring_inclination - ring_chi2_fit, ring_cov_matrix - ring_fit_method ### Storage Classes: MuonRingParameter - Container classes in io/containers.py - After ring/circle fitting, store parameters: - run_id, event_id, tel_id, inputfile - ring_center_x, ring_center_y, - ring_radius - ring_phi, ring_inclination - ring_chi2_fit, ring_cov_matrix - ring_fit_method - Example ring fitting: - image/muon/muon_ring_finder.py - ChaudhuriKunduRingFitter class ### Storage Classes: MuonIntensityParameter - Container classes in io/containers.py - After intensity fitting, store parameters: - run_id, event_id, tel_id, inputfile - ring_completeness, ring_num_pixel, ring_size, off_ring_size, - ring_width, ring_time_width, - intensity cov matrix, COG x, COG y - impact_parameter, impact_parameter_chi2 - impact_parameter_pos_x, impact_parameter_pos_y - optical_efficiency_muon, mask, prediction, - intensity_fit_method #### Storage Classes: MuonIntensityParameter - Container classes in io/containers.py - After intensity fitting, store parameters: - run_id, event_id, tel_id, inputfile - ring_completeness, ring_num_pixel, ring_size, off_ring_size, - ring_width, ring_time_width, - intensity_cov_matrix, COG_x, COG_y - impact_parameter, impact_parameter_chi2 - impact_parameter_pos_x, impact_parameter_pos_y - optical_efficiency_muon, mask, prediction, - intensity_fit_method - Example intensity fitting: - image/muon/muon_integrator.py : MuonLineIntegrate class #### Progress so far - H.E.S.S. algorithm implemented (Chaudhuri-Kundu and 2D log-likelihood) with preliminary tests - "muonmaster" branch no longer exists → has been merged into "master" branch - For implementing more methods, please create a new branch for each method - Easier to keep track of and review changes - Cleaner approach, smaller steps, more frequent merging - Muon_reconstruction example has been adopted into a tool (MuonDisplayerTool) #### List of relevant files in ctapipe - examples/muon_reconstruction.py - image/muon/ - muon_reco_functions.py - muon_ring_finder.py - muon_integrator.py - muon_diagnostic_plots.py - & generic classes: intensity_fitter.py & ring_fitter.py - MC muon simulation test files mst-fc and sst-dc at 100% efficiency in ctapipe-extra repository (can add/distribute more xSTs / efficiencies if there is interest → would need to as Karl Kosack) # Muon Image Fitting Circle and width fit, intensity expectation # Muon Image Fitting Circle and width fit, intensity expectation # Figures of Merit – so far - Gaussian-like efficiency distribution? - Linearity of correction factor? - Number of muons found? ### Other Figures of Merit - Independence of muon ring width / impact parameter from the muon optical efficiency - can be tested - Robust performance against broken pixels - Needs dedicated study / extra MC - Agreement between single muons and hadronic muons (e.g. proton simulations) - Can be tested with hadronic MC - Independence of muon efficiency from observation position / environment - Probably needs data #### Muon Calibration – to do - Write more unit tests in ctapipe (throw warnings if code doesn't work as expected) - Implement other algorithms - Check and improve figures of merit - Implement other applications of muons - Psf, camera flat-fielding, mirror calibration, - Investigate other muon issues - Bias due to hadron / wavelength/ broken pixels... ### Muon Calibration Paper - Suggestion - For a technical study, compare the known methods of muon reconstruction and draw conclusions on "best" approach, e.g. - Most muons usable for calibration - Linearity with optical efficiency - Gaussianity of distribution - Dual-mirror telescopes performance - To compare in as unbiased an approach as possible: - Implement all algorithms for comparison in ctapipe - Use same simulations for testing all algorithms - Follow standard input/output/storage class format # Thank you for your attention Any Questions?