

General status of the Atmospheric Correction projects (UC-CAL-ATMO-3000)

CCF general meeting, Barcelona, Oct. 3nd, 2017

Markus Gaug Universitat Autònoma de Barcelona – IEEC-CERES

FRAM internal analyses

- Need to define where online-only analysis goes to.
- Depending on complexity:
 - either moves into ctapipe/atmosphere
 - if it does not need a lot of dependencies
 - if it can be integrated into the analysis chain
 - or create a separate package, inside GitHub
 - needs to provide a python interface
 - should follow the coding guidelines
 - should import ctapipe
 - Karl Kosack can create the repo package with all standards (docu, tests, etc.)
- What exactly they write out, and which file (table, database)?
 Should be stored as FITS images

LIDAR internal analyses

- Moves into ctapipe/atmosphere
- Inputs:
 - LIDAR measurement itself
 - molecular profile
 - database with long-term degradation
- Two (corrected) LIDAR extinction profiles are written into a FITS/HD5 file.

- We want to write one common analysis suite, together with the experts from ARCADE, CEILAP, LUPM and IFAE/UAB.
- Organize a workshop to start this activity.

Pure CTC analyses

- Depending on complexity: must go into ctapipe/atmosphere
- What exactly they write out?

Calculate interpolated extinction cubes (altitude, camera FOV, wavelength, time)

- Needs the following inputs:
 - the FRAM output Voronoi tesselated images vs. time
 - the LIDAR profiles before and after the time interval
 - historical database from AERONET, etc.)
 - CTC vs. time (within time interval)
- What exactly they write out:
 - Interpolation of tessellated VAOD maps
 - Interpolation with LIDAR profiles / splitted into low and fast component
 - Confontration with historical database
 - Confrontation with interpolated CTC
 - Calculation of systematic error vs. time, using "current" Average Extinction Cube (AEC)
 - Definition of new Time Interval (TI) in case of exceeding threshold
 - Calculation of new AEC with corresponding (better) TI start.

Calculate molecular extinction parts (from GDAS/ECMWF)

- Download data from outside
- Stores (manipulated) data in a central archive
- For now, a local file only
- Should go into ctapipe/atmosphere

Time (e.g. 25 min.)

Simulations:

- Part (e.g. altitude dependency) included in simulations prepared now
- More complicated parts (e.g. obstruction of parts of FOV) not yet planned.
- Results should go into a database, accessible by ctapipe

Interaction with simulations:

- Results should go into a database, accessible by ctapipe
- Online analyses: Use data corrections! (from MAGIC)
- Offline analyses: Use MC corrections!
- still not clear where and when and at which time intervals MC will be run....

