

Jonathan Biteau | CTA-gpropa call | 2016-10-03 | Page 1/7

Some open questions on the EBL

Jonathan Biteau | CTA-gpropa call | 2016-10-03 | Page 2/7

The EBL imprint on gamma-ray spectra

Jonathan Biteau | CTA-gpropa call | 2016-10-03 | Page 3/7

Scaling the optical depth

Joint fit of EBL and intrinsic emission

$$\phi_z(E) = \phi_{int}^{\alpha}(E) \times \exp(-\alpha \times \tau(E, z, n))$$

Accounting for intrinsic curvature if needed Question to investigate: which criteria?

Fit of the normalization factor α

e.g. with likelihood profile techniques

Fermi-LAT

0.2 < z < 0.5

0.6

0.8

0.4

Fermi-LAT 0.5 < z < 1.6

TS_{det} ~ 25

1.2

normalized EBL opacity $\left. au
ight| au_{\mathsf{FR08}}$

1.5

0.5

0

H.E.S.S.

TS_{det} ~ 80

Fermi-LAT

z < 0.2

TS_{det} ~ 4

0.2

Jonathan Biteau | CTA-gpropa call | 2016-10-03 | Page 4/7

Fitting algo. accounting for gamma-ray data and local EBL constraints:

Biteau & Williams 2015

Minimization over EBL parameters (SIMPLEX, MIGRAD, HESSE) ~ 10-20 sec

High-Accuracy EBL Spectrum

Some short-term goals for the EBL & IntSpec tasks

Reproduce Daniel's study

Intrinsic spectra: list of Fermi-LAT sources with extrapolated spectra (which cut-off or curvature?)

EBL: reconstruction of the scaling factor for various models

Analysis: ability to jointly fit multiple intrinsic spectra together with the EBL parameters (e.g. normalization)

Build a solid selection method for the intrinsic spectral model

List possible methods on the market and identify a simulation strategy to asses the impact of using this or that method

Build the tools to compute the optical depth vs E and z

Based on n(E,z), on n(E₀,z=0) x f(z)

Go further if we can: build a generic model parametrization

Jonathan Biteau | CTA-gpropa call | 2016-10-03 | Page 7/7

Backup

Model-Independent Gamma-ray Constraints

Energy Range [TeV]

10⁻

0.2

0.1

0.3

Redshift

0.4

0.5

. GeV spectral index when contemporaneous

Hypotheses

= 3

0.7

0.6

- . TeV softer than GeV
- . smooth concave spectrum at the source

Direct measurement of the night-sky brightness

But bright local environment (e.g. zodiacal light) suggests foreground contamination, particularly for the COB \rightarrow overestimation of the EBL.

Counting the number of objects per magnitude band

Faint end of the distribution function must drop below a given slope for the integral to converge (completeness). Does not account for unknown populations of sources or truly diffuse component \rightarrow underestimation.

Unresolved Sources & Reionization

A word about CIBER

Other means of detection: 2nd moment (fluctuations) instead of 1st moment (brightness)

A fluctuation excess in NIR ?

Science publication in November 2014

Attributed to IHL

- Diffuse galactic light below l<500
- Low-z galaxies above l>2000
- Unknown excess in between to which intra-halo light from stars stripped from their parent galaxies could contribute.

Excess fluctuations → **EBL intensity**

Table 1. Contributions to near-infrared EBL anisotropy and intensity. At each wavelength, we list the measured fluctuation amplitude at large angular scales; the model-dependent ratio of EBL intensity to EBL anisotropy; the IGL determined by previous measurements; the ratio of the IHL and IGL intensities; and finally, the inferred total background intensity from both components. We also list the background intensity that would arise assuming the measured fluctuations are entirely due to high-redshift EOR galaxies.

λ (μm)	Measured δλ/ _λ * (nW m ⁻² sr ⁻¹)	$rac{\lambda I_{\lambda,IHL}}{\delta\lambda I_{\lambda}}$	λ/ _{λ,IHL} ‡ (nW m ⁻² sr ⁻¹)	λ/ _{λ,IGL} § (nW m ⁻² sr ⁻¹)	$rac{\lambda I_{\lambda, IHL}}{\lambda I_{\lambda, IGL}}$	$\lambda I_{\lambda,\text{IHL}} + \lambda I_{\lambda,\text{IGL}}$ (nW m ⁻² sr ⁻¹)	λ/ _{λ,EOR} (nW m ^{−2} sr ^{−1})
1.1	$1.4^{+0.8}_{-0.7}$	5	7.0+4.0	9.7 ^{+3.0}	0.7	$16.7^{+5.0}_{-4.0}$	28
1.6	$1.9_{-0.8}^{+0.9}$	6	$11.4_{-4.8}^{+5.4}$	$9.0^{+2.6}_{-1.7}$	1.3	20.4-5.1	38
2.4	$0.32 \pm 0.05 \pm$	7	2.2 ± 0.4	7.8 ^{+2.0} ¶	0.3	$10.0^{+2.0}_{-1.3}$	6.4
3.6	$0.072^{+0.019}_{-0.021}$	9	0.65 ^{+0.17}	5.2 ± 1.0	0.1	5.9 ± 1.0	1.4
3.6#	0.049 ^{+0.021}	9	$0.44^{+0.19}_{-0.06}$	5.2 ± 1.0	0.1	5.6 ± 1.0	1.0
4.5	$0.053 \pm 0.023 \dagger$	7	0.37 ± 0.16	3.9 ± 0.8	0.1	4.3 ± 0.8	1.0

*RMS fluctuation amplitude computed as averages of measured data over 500 < l < 2000, except for those marked \dagger , which are determined at l = 3000 using fainter mask cuts due to restricted field size (see also note ^{II}). \ddagger The IHL background from the product of columns 2 and 3. \$The IGL background as compiled by (28). ||Computed EOR background assuming EOR fluctuations with $\lambda_{l_c}/\delta\lambda_{l_c} = 20$. \$Determined at *K* band corresponding to 2.2 μ m. #Computed using the measurements of (6) averaged over 500 < l < 5000.