

ICE CTA Scheduler

22 June 2016

Álvaro García-Piquer (agarcia@ice.csic.es)

Emma de Oña Wilhelmi

Josep Colomé

Institute of Space Sciences

Problem Conditions

- Observatory
 - Several subarrays
 - Each subarray contains a number of telescopes (TLCs) of same or different types
 - TLCs can be shared between subarrays (those subarrays will then exclude each other in simultaneous observation, i.e, Subarray1: All TLCs vs Subarray2: LSTs + MSTs)
 - All telescopes are in the same location (lat, long, alt) No extension of the observatory(ies) considered so far
- Parameters of each target
 - Coordinates
 - Observation time to be achieved
 - Maximum Zenith Angle
 - Subarray assigned
- Slew time between observations of different targets
 - Overhead time of 2 minutes + 1 second per degree
- Observation blocks
 - 1200 seconds (can be configured for each target)
- Long-term Scheduler and Short-term Scheduler (real-time response to bad weather conditions / ToO / etc)

Observation Constraints

- Hard Constraints
 - Visibility constraints
 - Dark hours (global)
 - Maximum Zenith Angle (target)
 - Resource constraints
 - Subarrays that share telescopes cannot observe at the same time
- Soft Constraints
 - Maximize observation time of each night
 - Minimize slew time of each night (time blocks will increase due to consecutive observations)

Optimization Strategies

- Genetic Algorithm (GA)
 - Single objective
 - Maximize the observation time
- Multiobjective Evolutionary Algorithm (MOEA)
 - Two objectives
 - Maximize the observation time
 - Minimize slew time

Comparison between Strategies

- Scenario
 - CTA South: 464 targets (3692.11 hours)
 - 1 year planning based on the KSP programs
 - 4 subarrays and 4 type of telescopes
 - 0: LST + MST + SST
 - 1: LST + MST
 - 2: MST + SST
 - 3: LST
 - Target subarray assigned according its type (not necessarily in agreement with information provided on the KSP):
 - Galactic Survey: L + M + S
 - Extragalactic Survey: L + M
 - Galactic Center Mini Survey: M + S
 - Pevatrons: M + S
 - Others: L
 - Subarray priority randomly assigned each night

Comparison between Strategies

- Results (average of all subarrays)
 - Observation time metric
 - GA: 3609 observations (1168 hours)
 - MOEA: 4271 observations (1359.68 hours)
 - Slew time metric
 - GA: 8.32% of the working time* (104.7 hours)
 - MOEA: 2.62% of the working time* (34.26 hours)
 - * Working time: slew time + observation time
- Execution time
 - Around 5 hours to simulate the 1 year scenario

Comparison between

Comparison between Strategies

- Scientific point of view
 - MOEA allows to complete more objects than GA because it better optimizes the working time

Target Type	Subarray	#Targets	GA #Planned (#Completed)	MOEA #Planned (#Completed)
GAL	0 (L + M + S)	170	168 (0)	170 (25)
EXP_GPS	1 (L + M)	231	231 (140)	231 (197)
GCMinil	2 (M + S)	20	20 (0)	20 (0)
Pevatron	2 (M + S)	5	5 (0)	5 (1)
Others	3 (L)	38	37 (0)	38 (6)

Schedule by Resource

Schedule by Resource

Conclusions

- The proposed scheduler is able to schedule several subarrays simultaneously
- The scheduler allows flexibility in the definition of:
 - Hard constraints
 - Optimization strategy (soft constraints and optimization algorithm)
 - Scenario (targets, subarrays...)
- Optimization Algorithm (GA vs MOEA)
 - MOEA optimizes better the working time than GA
 - Slew time is reduced and more time is available for observing (near 70 hours in one year)
- Further work
 - Define priority objects
 - Consider the priority in the Optimization Algorithm of the scheduler
 - Response to ToO