

# CTA Computing Grid resources and technical aspects of CTA MC simulations

L. Arrabito, J. Bregeon

LUPM CNRS-IN2P3 France



## **Outlook**



- Current status of CTA Computing Grid (CTACG)
  - CTACG resources
  - Computing model and operations
  - DIRAC for CTA
  - Past productions: prod3
- Organization process for official productions
- How are handled specific requests?
- Conclusions and future plans

## **CTA Computing Grid (CTACG)**



#### CTA Computing Grid (DATA WP)

- Use of EGI grid through the CTA Virtual Organization (since 2008)
- Use of DIRAC to access grid resources (since 2011)

#### **CTA Virtual Organization**

- Open to any CTA member having a grid certificate
- Supported by 20 EGI sites in 7 countries + 1
   ARC site in Sweden
- Eventual new OSG (US) resources in future

#### DIRAC for CTA

- Workload and Data Management System
- Dedicated server instance at CC-IN2P3, PIC and DFSY
- CTA-DIRAC software extension





Resources

#### CTACG resources



- Reference pages
  - o <a href="https://forge.in2p3.fr/projects/cta\_dirac/wiki/Estimation\_of\_computing\_resources\_usage">https://forge.in2p3.fr/projects/cta\_dirac/wiki/Estimation\_of\_computing\_resources\_usage</a>
  - o <a href="https://forge.in2p3.fr/projects/cta\_dirac/wiki/CTA-DIRAC\_MC\_PROD3\_Status">https://forge.in2p3.fr/projects/cta\_dirac/wiki/CTA-DIRAC\_MC\_PROD3\_Status</a>
- CPU: 6000 8000 cores available on average
- About 2.2 PB (+ 0.7 PB of tape) distributed among 6 main sites
- Additional 50 TB at Frascati and Torino for specific studies
- Disk fills rapidly during MC massive productions -> usually the main bottleneck

| Site             | Available Disk (TB) | Used Disk (TB) | Total Disk (TB) |
|------------------|---------------------|----------------|-----------------|
| CYFRONET-LCG2    | 16                  | 627            | 643             |
| DESY-ZEUTHEN     | 7                   | 648            | 655             |
| IN2P3-CC         | 105                 | 249            | 354             |
| GRIF (LPNHE+CEA) | 17 (7+10)           | 182 (112+70)   | 200 (120+80)    |
| IN2P3-LAPP       | 29                  | 89             | 118             |
| INFN-T1          | 114                 | 172            | 286             |
| Total            | 288                 | 1967 (87%)     | 2255            |

## **CTACG** resource managament



#### Organization

- A few meetings per year between CTACG and MC group to estimate the needed resources
- 1 meeting per year between CTACG and site contacts (CTA contact + site admin)
- 2 working documents: 'CTA VO Requirements' and 'CTACG Planning' sheet
- Resource requirements/pledges/provision on an annual basis
- Informal agreements up to now, but used resources accounted as in-kind contributions
- See also <a href="https://forge.in2p3.fr/projects/cta">https://forge.in2p3.fr/projects/cta</a> dirac/wiki#CTACG
- If you want to contribute with resources, contact us



## **Computing Model and Operations**



## **Computing Model**

- MC productions are run everywhere (about 20 grid sites)
- Output data are stored (on the fly) at 6 main Storage Elements (SE)
- MC analysis is run at a restricted nb of sites (for efficiency reasons)
- We can freely specify different job scheduling rules for each 'job type'

## Operations (production team)

- Resource management
- DIRAC servers administration
- Development of CTA-DIRAC sw extension (essentially the job interface to configure CTA jobs)
- Launch and follow the productions
- Users support for specific MC productions and analysis

## **DIRAC for CTA**



DIRAC is a framework for the Workload and Data Management on distributed resources

- Used to access CTACG resources, but it can integrate also other types of resources (clouds, local clusters, etc.)
- Based on a Services Oriented Architecture
- CTA has a dedicate server installation (recently upgraded) at IN2P3, PIC, DESY
  - 5 core servers running all Services and Agents
  - 2 MySQL servers
  - 2 web servers
- To access CTACG resources, users just need to install the DIRAC client (don't need any grid middleware)

## **DIRAC** for CTA: main Systems in use



## Workload Management System

- Job brokering and submission (pilot mechanism)
- It provides a common interface to hetereogenous resources (CREAM, ARC, clusters)
- Central management of CTA VO policies

## Data Management System

- All data operations (download, upload, replication, removal)
- It includes a Replica and Metadata Catalog (DIRAC File Catalog, DFC)

## Transformation System

 Used by production team to handle 'repetitive' work (many identical tasks with a varying parameter), i.e. MC productions, MC analysis, data management operations (bulk removal, replication, etc.)

## **DIRAC File Catalog (I)**



- Replica and Metadata catalog
- More than 27 M of replicas registered in a logical namespace
- About 10 meta-data defined to characterize MC datasets
- Simple commands to retrieve list of files, e.g.:

```
cta-prod3-query --site=Paranal --particle=gamma --tel_sim_prog=simtel --array_layout=hex --phiP=180 --thetaP=20 --outputType=Data
```

- Typical queries return hundreds of thousands of files
- Main useful queries in CTA-DIRAC redmine wiki:

https://forge.in2p3.fr/projects/cta\_dirac/wiki/CTA-DIRAC\_MC\_PROD3\_Status#CTA-DIRAC-MC-PROD3-Status

## **DIRAC File Catalog (II)**



- It supports 'datasets', i.e. aliases to given queries
- We have created datasets for the most common queries, e.g.:

```
$ cta-prod3-show-dataset
Available datasets are:
Paranal_electron_North
Paranal_electron_North_20deg_3HB8
...
```

\$ cta-prod3-show-dataset Paranal\_gamma\_South
Enter eventsPerRun (default 20000): Paranal\_gamma\_South: ... 1 MetaQuery {'thetaP':
20.0, 'particle': 'gamma', 'array\_layout': 'hex', 'tel\_sim\_prog': 'simtel', 'outputType':
'Data', 'MCCampaign': 'PROD3', 'phiP': 0.0, 'site': 'Paranal'} 2 EventsPerRun 20000 3
TotalNumberOfEvents 0.10e9 4 NumberOfFiles 49112 5 TotalSize 75.5 TB

\$ cta-prod3-dump-dataset Paranal\_gamma\_South

Web interface available for free in DIRAC, but not really used for productions

## **DIRAC** for CTA: Transformation System



#### Transformation System **Architecture**

- The Production Manager defines the transformations with meta-data conditions and 'plugins'
- InputData Agent queries the DFC to obtain files to be 'transformed'
- Plugins group files into tasks according to desired criteria
- Tasks are created and submitted to the Workload or Request Management System



**Transformation Monitoring** 



## Past productions: resource usage



## Prod2, Prod3 run on CTACG resources and MPIK, DESY clusters:

https://forge.in2p3.fr/projects/cta\_dirac/wiki/Estimation\_of\_computing\_resources\_usage

#### CTACG

- ~100 M hours HS06 per year and 2 PB of disk (+ 0.3 PB of tape)
- Prod3 MC production for Paranal and first stages of Prod3 analysis (MARS and evndisplay)
- Prod2 MC production

#### MPIK

- ~38 M hours HS06 per year and 950 TB
- Prod3: MC production for La Palma and Paranal test
- Prod2: MC production and analysis

#### DESY

- ~30 M hours HS06 per year and 1.2 PB
- Prod2+Prod3 analysis

## **Prod3 on CTACG (I)**



## Prod3 running since August 2015

- Study the different possible layouts of telescope arrays, pointing configurations, hardware configurations, etc.
- 800 telescope positions, 7 telescope types, multiple possible layouts, 5 different scalings
- Run 2 different analysis chains on the simulated data (MARS, evndisplay)
  - o Each one processing about 500 TB and 1 M of files for 36 different configurations

## Example of analysis with MARS



- Very complex workflow
- Using many sub-samples
- Several steps performed on the grid by the production team while others locally by analysis teams
- The whole chain far from being automatised

## **Prod3 on CTACG (II)**





Specific productions run by users (atmospheric studies, SST mini array, etc.)

## **Prod3 on CTACG (III)**



- Job success rate: 84%, main reasons for failures
  - Stalled jobs due to high memory consumption
  - Application errors



15

## **Prod3 on CTACG (IV)**



About 4.7 PB of processed data



# Organization process for official productions (I)



## Discuss plans details

- Priorities of simulation productions
- Simulation scheme
- Needed statistics
- Resource estimations (CPU, storage, memory req.)
- Sw to use and configuration parameters

#### Where?

- MC calls
- o redmine MC forum, e.g.:

https://forge.in2p3.fr/boards/201/topics/1536?r=1582

# Organization process for official productions (II)



- Run productions sharing tasks
  - o MC group
    - provides sw for production and analysis
    - runs productions and analysis on local clusters and on the grid
    - produces final results
  - Production team (DATA WP)
    - ports MC sw into DIRAC workflows
    - runs massive productions on the grid and low-level stages of analysis (using the Transformation System)
  - Use CTA-DIRAC redmine issues for the follow-up:
    - https://forge.in2p3.fr/projects/cta\_dirac/issues
- Really a team work!

## How are handled specific requests?



## Example of atmospheric simulation studies

- Interested people should estimate the needed resources (CPU and storage) and contact the production team
  - Usually CPU is not a problem
- If the requirements are low wrt to official productions (especially for storage, i.e. a few TB)
  - Users run the production by themselves submitting parametric jobs (usually enough) -> See next slide to get started with DIRAC
  - Power users could use the more advanced Transformation System if needed
  - Users jobs have highest priorities wrt to production jobs
  - Production team provides support (best effort basis) for job debugging, porting sw into DIRAC workflows, etc.
- If the requirements are high
  - These requests should be discussed within the MC group
- In any case -> use CTA-DIRAC redmine for your requests

## Run your production: getting started with DIRAC



- General documentation on CTA-DIRAC wiki:
  - https://forge.in2p3.fr/projects/cta\_dirac/wiki/CTA-DIRAC\_Users\_Guide
- Pre-requisites:
  - Request a grid certificate
  - Register to CTA VO
- Install the DIRAC client. Note that:
  - Access to grid SE relies on lcg-bindings -> recommended platform is SL6
  - Other platforms (other Linux and Mac OS) can access grid SE using an alternative DIRAC service but with lower performances
  - Consider using a VM
- Learn DIRAC basics (job and data management) from the wiki
- Ready-to-use examples are available for prod3 simulation and 2 analysis sw (read\_cta, evndisplay)
  - https://forge.in2p3.fr/projects/cta\_dirac/wiki/CTA-DIRAC\_Prod3\_Users\_Guide
  - Simple python scripts using DIRAC API
- Adapt the scripts for your use case

## **Conclusions**



- CTACG resources are open to any member of CTA
- The entry point to access resources is DIRAC
- With the current CTA-DIRAC prototype, we manage the MC production, analysis and data archive
- In future:
  - CTA computing model baseline is a distributed model using 4 datacenters
  - DIRAC will be used to manage the different steps of the level 1 data processing
  - To do this, it will interface the final CTA Archive (under development)
- If you have any simulation request, just contact us
- Simulation priorities are discussed within MC group and production team

## **Future plans**



- The next production to be started soon is the simulation of the HB9 array layout (approved baseline layout for CTA South) -> it will require about 500 TB
- Development of a production system, based on the Transformation System to automatise the whole processing chain (on an input data-driven model)
- Use CVMFS as software repository for grid jobs

# Backup

## **Prod3 on CTACG (IV)**



#### About 7.7 PB of transferred data



## **CTA** computing: data flow





## **CTA** data volume



#### Raw-data rate

CTA South: 5.4 GB/s

CTA North: 3.2 GB/s

1314 hours of observation per

year

#### Raw-data volume

- ~40 PB/year
- ~4 PB/year after reduction

#### Total volume

 ~27 PB/year including calibrations, reduced data and all copies



## **DIRAC** hardware setup



DIRAC instance dedicated to CTA: upgraded in 2016

#### 5 Core servers

- 1 running DMS + 1 DIRAC SE: 16 cores, 8GB RAM, 2 TB of disk for the SE (at IN2P3)
- 1 running TS and RMS: 16 cores, 8 GB RAM (at IN2P3)
- 1 running WMS: 32 cores, 32 GB RAM (at PIC)
- 1 running Accounting, Framework, etc.: 32 cores, 32 GB RAM (at PIC)
- 1 server installed at DESY last week (thanks to A. Haupt): running redundant services

#### 2 MySQL servers

- 1 hosting FileCatalogDB, TransformationDB, ReqDB (dedicated server with 600 GB at IN2P3 MySQL cluster)
- 1 hosting all other DBs (old server)

#### Web servers

- 1 hosting the new web portal
- 1 hosting the old web portal still in use