

cherenkov telescope array

Cherenkov Transparency Coefficient for CTA

CTA CCF Meeting, Barcelona June 2016

Stanislav Stefanik (Charles University, Prague)

with the help of

Raquel de los Reyes, Konrad Bernlöhr, Joachim Hahn (MPIK Heidelberg)

Cherenkov Transparency Coefficient

Cherenkov Transparency Coefficient

J. Hahn et al., Astropart. Phys. 54, 25, 2014

- CTC introduced in H.E.S.S. phase I to assess the transparency of atmosphere
- calculated on per run basis as a mean over all active telescopes
- hardware independent for H.E.S.S.-I, sensitive to atmospheric conditions only

Cherenkov Transparency Coefficient

Atmospheric monitoring using CTC in H.E.S.S.

- plan to use the CTC within Atmosphere calibration WP
- atmosphere monitoring using CTC:
 - contemporaneous with the data taking
 - performed in the same direction and FoV as the actual observation
- consequently, CTC can be used for data correction
 - first attempt made by Hahn et al. (2014) for H.E.S.S. observations of Crab Nebula
 - more detailed feasibility study foreseen for CTA

CTC for CTA

$$CTC = \frac{1}{N_{tel}} \sum_{i}^{N_{tel}} \frac{\left[\frac{1}{\mathcal{N}} \frac{1}{M} \overset{\bigotimes}{R_i} (\theta_{zen} = 0^\circ)\right]^{\frac{1}{1.7}}}{\mu_i g_i}$$

Problems applying the original scheme from H.E.S.S. to CTA:

- multiplicity factor *M*:
 - corrects for different telescope rates in runs with various numbers of active telescopes
 - does not account for different patterns of telescope layout
 - hard coded as one mean value taken over all possible layout scenarios
- not a solution for CTA: >> 4 telescopes, different telescope types, enormous number of possible subarray layouts
- different trigger thresholds between scheduled observations
- \rightarrow unrealistic look-up tables needed

Lessons learned from H.E.S.S. data:

(many thanks to people at MPIK and H.E.S.S. coll. for providing me with data and advice)

- expect $t_i = t_j$; $i, j = 1 \dots 4$ (at least for MC)
- formerly: RMS ~ 9%
- main cause: read-out rates strongly depend on relative positions of telescopes
- goal: mitigate the factors that contribute to RMS of CTC distribution
 - see more tomorrow in CTC array calibration talk

CTC for CTA: Used MC dataset

- Prod 3, La Palma
- 146 runs
- 250000 showers per run
- zenith angle 20°
- azimuth angle 180° (protons coming from north)
- $\mu, g = const$
- no simulated absorbers
- so far only max. 4 active telescopes considered

CTC for CTA

- so far limited statistics but the results seem to be consistent with previous study
- only good atmosphere and no hardware degradation
- width of distributions given only by statistical fluctuations
- \rightarrow gives the limit for CTC estimation

Zenith angle correction

- applied descriptions of dependence not ideal (unphysical)
- bad zenith correction introduces additional uncertainty in CTC distributions
- better approach under study
- CTA: investigate for some range of angles

Data correction using CTC

Future plans

- zenith angle dependence
- geomagnetic field:
 - azimuthal dependence
 - explore CTC for Paranal
- mirror & hardware degradation
- need to check the performance for worse atmospheric conditions
- none of this could be done so far

Future plans

- zenith angle dependence
- geomagnetic field:
 - azimuthal dependence
 - explore CTC for Paranal
- mirror & hardware degradation
- need to check the performance for worse atmospheric conditions
- none of this could be done so far
 - all roads lead to Monte Carlo: simulations of specific observational conditions would be very helpful

Further future plans

- intent to periodically cross-calibrate CTC with other atmospheric monitoring devices planned for CTA
 - especially important after hardware changes
 - collaboration within the Atmo. Calibration WP
- example: H.E.S.S. vs MISR satellite
 - cross-check with CTA data

J. Hahn et al., Astropart. Phys. 54, 25, 2014

Further future plans

- intent to periodically cross-calibrate CTC with other atmospheric monitoring devices planned for CTA
 - especially important after hardware changes
 - collaboration within the Atmo. Calibration WP
- example: H.E.S.S. vs MISR satellite
 - cross-check with CTA data

J. Hahn et al., Astropart. Phys. 54, 25, 2014

- Feasibility study of the CTC for CTA started and ongoing
- available simulations for protons allow only limited progress
- new MC crucial for further feasibility study but it is the only "investment" needed for this method
- CTC atmospheric measurement is a mean seen over all telescopes which should observe the same conditions
- Tomorrow: calculation of CTC improved in terms of geometrical configuration of array, cross-calibration