Preliminary ACTL-SLOW Design in
the ACS and OPC-UA context

Summary

* General Introduction to ACS
* Preliminary ACTL-SLOW proposed design

 Hardware device integration in ACS and ACTL-
SLOW

e Monitor and Control Points:

— How to define them in an uniform way
— Naming Convention

Modification to what is reported here could happen based on
the ongoing definition of the ACTL Architecture and of the ACTL-OPS /ACTL-SLOW interface.

All reported here will be then formalized in ACTL-SLOW the design
document that will be a live document shared with all telescope teams.

Take advantages from diversity

LST software component organization

Telescope
ACTL
Interface

LST
Interface

Telescope Control
ACS Component

T
Interface Eng. IIF Eng. IF Eng. IF

CACO OPCUA OPCUA OPCUA

Camera Control Drive AMC
(CACO Buisness Logic) System System

OPCUA

CCD
(offline pointing
correction)

OPCUA OPCUA

Power Condition
Control Monitoring

Take advantages from diversity

cta

cherenkov telescope array

Camera Slow Control functional model

1

Operator

ACTL\

ACTL Configuration
Ctrl & Mon. Database

Nectarcam\
Control 5erver\
€ (]
Remote Nectar
- Camera > Module =
_—— __—| controler Controller [
/ ,/ \
AN
Camera\ X \
K / N N N
o] (] o o o

D!gltal Switch Calibation Trigger Embedded Front

Trigger Controller Boxes Interface Camera End

Crate Board Controller Board
I 265
I , ’
| 6 s
|
|
! Data
: Switch
I

2
i 7
. Camera Server\ -
\ z
a
Event Builder
T
I
ACTL\
Y
o L=
y ACTL
<
NectarCAM

Take advantages from diversity

Bridge | Control Highler

level
control

Scripts PLC software

Drive Exists (ina Exists Python

system PLC) client in also used at
ACS pSCT/SST-1M
CCD Exists (for Exists Java ACS | Scripts Elaborate
cameras Prosilica) Compone display
on a SL nts software. No
machine OPC UA server
for Apogee yet.

AMC Exists Partly Scripts

MST

Take advantages from diversity

pSCT subsystems

Global alignment system
Calibration and auxiliary systems

Camera Slow Control
Panel-to-panel alignment system
Positioner control

Array trigger and timing demonstrator

Custom solution mostly based on LabView

Marcos Santander - pSCT Slow Control Status - ACTL meeting - Barcelona (March 2016)

Take advantages from diversity

i A\
I’.@vatgwe \

Telescope Control System

* Two different systems, one for drives and one for safety, with distinct
modes of communication and developed in Beckhoff environment

* Hardware: COTS modules from Beckhoff
* OPCUA protocol as communication interface

* A local control box allows direct command of the motors close to the
telescope

Time server

9-11 March 2016 ACTL General Meeting - Barcelona

Take advantages from diversity

Schedule: What’s next

Redesign of the HW — FW driven by prototyping lesson learnt

- SW design we have in mind to reflect the changes

| Software || Hardware | Command

Time Board

Backplane

Camera Server PC
DAQ Board

TARGET Camera Server

LED Flasher

Power Board

[72]
[o

E -u I I I I I
3
S

Safety Board

Safety Controller

Farm
Common
CTA

Camera
Bridge

Take advantages from diversity

General Software Design

AMC: ok

CCD: ok (from MST)

Drive: ok (from MST)
Safety: in progress
Digicam SC: in progress

Digicam Data: in progress

SST-1M

6/15

Low-level
ML Config

SSTIM |.....

XML

Translators

t XM
nterfac
efiniti

AMC Master AMC Legend:
(Telnet) (Opata Input, config
A T T [JRunning Code: firmware, component
- " H Low level interface
Lid CCD 'endor to Custom to OPC-UA Bridges
(Vendor prop.) OPC-UA cco ACS Components
—_— - e | Node.js server (with Java Clients)
: » M Actual GUI
Sky CCD \Vendor to > Configuration items
(Vendosprop) OPC-UA cco » SSTIM B
: » Master dencte ongenng implementatizny
Surveillance CCD \Vendor to C >
(Vendor prop.) OPC-UA cD »
: S
Drive PLC Drive
(OPC-UA)
: Y
i : - Power Master
Safety PLC Safety - Cabinet Env. i
(OPC-UA) - Drive Safety L] AMC
: HTTP
: —>| 3xCCD |gont-end
Camera SC » Camera Slow -/¢ Drive (jSO‘N).
(Digicam UDP) ¢ ¢ "I Safety
: { Camera Slow
Camera Data N Camera Server - > Camera DAQ
(Digicam UDP) L S

IcD pdfiate @
~~~~~~~~~~~~~~ fsharepoinf  .ooovevereeee,
.................. .,MYSQ[ bmt O .“yg(“f,,,_,,isharepowt
L.1CD interface; i...JCD i



Take advantages from diversity

Software

Data Handling ocs [ Operator/Scientist GUI ] ACTL
[ On-site Data Analysic ]<~-|- System (DHS)
£ A : B ( ( Scheduler } [ Coordinator ] [ Resource manager ]
l Obs Access I =
On-Site | Repository ‘L ( )| -
[ Configurator ] Sequencer [ Observing Modes ]
< TMCDB Access . ,
obspB €
S Data Capturer l [ Monitoring ] [ Alarm ] [ Logger ]
TMCDB i

| sciTecho [* Control Devices
f=—— Instrument Calibration/

=l Sﬂ:::e ‘_] [ Control System Telsesctope ?rc::r;trol Auxiliary Control Icg::::le i
e ? DAQ (ICS) ystem (165} System

ACTL/DATA/OBS t z t t
_ik%Caxnm_a Server q OPC-UA ]:
LOCAL Control ’ ¢ : ¢
: [ Weather ‘( Aux ] ( pt)crwﬁ . ]
y TELESCOPE i ‘
[ Camera ] [ AMC ] Mmcs [ PMC ] [ Calibration ][ Metrology ] Telescope/COM/
Safety/Interlocks/Power/Networking I N F RA
Deployed in Serra La Nave Working in Lab

SST-2M



ACTL — SLOW and The Industrial Control System Pyramid

R ERP-Level
Enterprise

Resources

Communication Layer

Alma Common software for

the higher level systems MES-Level
.§‘ Manufacturing
Via functions < Execution System

IP 183.77.xx.x

S B8 BN B B B Communication Layer

OPC-UA for the control of

the Hardware Devices «\§ n Control-Level
Q Machine controllers
& [—

Communication Layer

Device=Level
Sensor-Actor=-

From Machine

UMTS .
signals
g (?6 1 "u
processes maintenanoe Iogistlcs manufacturing ”V ’

The discussion will proceed top-dow.

11



The ACS Environment

package ACS Architecture [ Main ])

4 - Hi-level APls
and tools

3 - Services

2 -Core
components

L - Base tools

— )

Applications

wmore to ¢comae,.,

S - Integrated APls
and toels

il

B

Figure 2.1: ACS Packages

ACS uses CORBA as middleware and provides:
Application communication handling:

Event Handling:
Command:

Logging:

Persistent Store:
Error/Alert Handling:

12



ACS Core Components

The components that are necessary for the development of any application

ACS Component Base interfaces and classes for Component part of the
ACS Component Model. In particular C++ Distributed Objects, Properties
and Characteristics are implemented in this package.

Configuration Database Interfaces and basic implementation for the
Configuration Database from where ACS Components retrieve their initial
configuration

Event and Notification System The Event and Notification System
provides a generic mechanism to asynchronously pass information
between data publishers and data subscribers, in a many to many relation
scheme.

Error System API for handling and logging runtime errors, tools for
defining error conditions, tools for browsing and analyzing runtime errors.

Logging System API for logging of data, actions and events. Transport of
logs from the producer to the central archive. Tools for browsing logs.

Time System Time and synchronization services.



ACS Services

This services are not strictly necessary for the development of prototypes and test :

ACS Container Design patterns, protocols and high level services for Component/
Container lifecycle management.

Serialization Plugs This package provides a generic mechanism to serialize entity
data between high level applications, typically written in Java.

Archiving System API and services for archiving monitoring data and events from
the run time system. Tools to browse, monitor and administer the flow of data
toward the archive.

Command System Tools for the definition of commands, API for runtime
command syntax checking, APl and tools for dynamic command invocation.

Alarm System API and tools for configuration of hierarchical alarm conditions, API
for requesting notification of alarms at the application level, tools for displaying
and handling the list of active alarms.

Sampling Low level engine and high level tools for fast data sampling (virtual
oscilloscope).

Bulk Data APl and services for the transport of bulk science data (images or big
data files) and continuous data streaming.



ACS Container-Component Model

This is the primary instrument for achieving separation of functional from
technical concerns.

Every Component must implement the ComponentLifeCycle interface. This
interface foresees the following basic lifecycle operations:

initialize — called to give the component time to initialize itself, e.g. retrieve
connections, read configuration parameters, etc

execute — called after initialize() to tell the component that it has to be ready
to accept incoming functional calls any time

cleanup —the component should release resources in an orderly manner,
because shutdown is imminent

aboutToAbort — the component will be forcibly removed due to some error
condition.

The Container passes to each Component a ContainerServices object. At that
point, the Component can assume that all infrastructural services it may
need have been properly set up by the Container and are available via the
ContainerServices object.



Characteristic Components

e Characteristic Components are a subclass of Components
tailored to the implementation of objects that describe
collections of numerical (typically physical) quantities. They
have been designed in particular to represent Control
System objects with monitor and control points or objects
with state and configurable parameters?Characteristic

e At control system level, Characteristic Component is the
base class used for the representation of any physical (a
temperature sensor, a motor) or logical device in the
control system.

* Higher level applications can use Characteristic
Components to implement any Component that has
configurable values representing numerical quantities.




Properties

Each Characteristic Component has 0..n Properties that are monitored and
controlled, for example status, position, velocity and electric current.

Properties can be read only or read/write.

Properties can represent values using a limited set of basic data types:
long, longlong and uLonglLong for integers

double for floating point numbers

string for strings.

enum for enumerations like states. This includes a boolean TRUE/FALSE
enumeration.

sequence<scalar property> of one of the previously defined scalar
property types. For example a sequence<long> allows manipulating a
group of properties of type long. Each item in the list can be assigned to a
long property object and manipulated (reading characteristics and value)
independently from the others.




Characteristics

Static data associated with a Characteristic
Component or with a Property, including
metadata such as:

name, description, version and dimensions

other data such as units, range or resolution.
Each Characteristic Component or each Property
has 0..n Characteristics

Characteristic Components and Properties:
Name, Description, Version etc.

Readonly and Read/Write Properties: default
values, range, units, format, resolution



ACSzACSComponent O ACSzCharacteristicModel Q/ =

+nameg

+description

£A3 +wvarsion(
+URI)
+aet_interface(
+get_characteristic_by_named
+find_characteristic
[~
ltype : - <Jnd—efi71ea>-;
Froper;y_ R
+characteristic_component__nameg
+get_sync
_ACS: O +get_asyncy
CharacteristicComponent +create_monitorQ
+name()
————— — =
ltype : <undefined> |
(W
_____ — .} A
Itype : <undefined> I ACS:RW <type>
T e e — +set_syncd)
o ACS:RO <type> +set_asyncd
| +increment()
+decrement(
Examples of user defined classes: lﬁ

-

Itype : <undefined> i
Control system Devices are N — S o -
{Characteristic) omponents MonitorPoint l ControlPoint I

An example of Device - =

Figure 3.1: Characteristic Component - Property - Characteristic class diagram



Properties & Hardware

The classes implementing the Property interfaces are responsible for the
actual interfacing with the hardware or, more in general, to retrieve/
calculate the value for the numerical entities. In order to decouple as
much as possible the implementation of Property classes and the access
to different kinds of data sources, ACS provides a parametrized Property
implementation based on the DevlO parameter,

A DevlO implementation is responsible only for reading/writing the

Property’s value from a specific device (memory location, OPC-UA nodes
in CTA).

The configuration parameters for all Characteristic Components, i.e. the
initial values for Properties control values and all Characteristics for
Properties, are persistently stored in the Configuration Database.



DevlO

r;;i'pe_: <;1dé?ine—d-»
|

Property

-
-

+characteristic_component__name{

+get_sync()
+get_async
+create_manitor(
+hnameq

U~\\\\\\\———1

ACSzRW=types=

‘type : <undefineds |

PE—

type : <undefined=
ACSzRO<type= |

+set_synci
+set_asyncl
+incrementy)
+decrement()

Servant concrete implementation

]

[tvpe  <undefined> |
DevlO :juniefin_ed:

[ S —

RO =type=Impl

Devi0

— —

+readd
+write)

|t_ype_ <u_nde_fine_d>

RW=type=Impl

. 't_')”p; {Rde—fine_d}/

—Devi0 : <undefined |



cta

cherenkov telescope array

Functional View — ACTL as a white box

\@
\Y

e“"@@@\
Information flow of B ((\Q\GAOOV
‘abstract’, functional S
data elements ACTL System \2 Confiaurat
System onfiguration
decomposed in Operator |€ml< R'eportln_g & _ Engineer
functions diagnosis diagnosis Moo control
Functions have A | Management of g:rr;f_lguratlon

structure and

granularity

Function hierarchy

allow to create the

WBS Operator
Functional data  control
associated to each

flow

ccccccccccccccc

oooooo

Igor Oya, MST meeting, March 2016

HW Status [Timeframe], Alarm
Status [Timeframe]

local data

A

Monitoring data, System

' alarm status

Operator
manual

Scheduling
and central
control

Monitoring &
Alarms

commands
sosmmssssey

T
Telescope commands'k
resource reques

\'4

ope array alarms

? Telescope monitoring,
E status

Control of telescopes

i /N

0 Telescope HW st

Telescope
Array

10

Functional block assigned to slow



ACTL — SLOW and The Industrial Control System Pyramid

N ERP-Level
Enterprise

Resources

To services g

N
Service Q$

Communication Layer

Alma Common software for

the higher level systems MES-Level
,§‘ Manufacturing
Via functions < Execution System

Communication Layer

OPC-UA for the control of

the Hardware Devices Qé ﬂ Control-Level
Q Machine controllers
& [—

Communication Layer

& iut 4 Device-Level
From & h’ v umTs N bt

signals v
gnals S v 419581 " T o
processes maintenance logistics manufacturing w” ’

24



ACTL-SLOW Context

: External Packages
: Other ACTL Packages

, NG

Array Central Control COM Control Archive Data Access
3 | h
N e | Status U
Camuﬁ:n: E 5 Alarm Comfigurasions Comtigurasions
Srmma, || A Cranges
| Environmental Data
Saa, ta0p Status, A |
5 Info, Alarms, { v
Sl Science metadata | '
! \\Art
e N PE—— <4
INFRAVICT Control  -~x¢3i1i5 } = Array Slow Control 2 ‘ rer— Array Interlocks System
Alarm Alarm
v e 4 v
| 3 |
| Science N st 1
| Start st | ! us | |
{ Metadata Configur;t’xns | Alarm Status ol Confgurons
| Commands v Ack, Ack | | snchmge
5 State Changes | E
PV

1

Array Data Acquisition Telescope Control Time Distribution System




MSTtel =¢
Telescope [ & [Telescoge (¥
# telint s
0.1 0.1 \J/<
™
SSTtel
5
- telObs
CTATel TelescopeObserver ]| < . AEX
0.1 -teoomq
<
0..1 - telObs LSTtel =5
3 L
0.1
0.1
1 IMount (E ITrajectoryGenerator (£
IServoMotor (
O ; O
i &
AN -
+mount | g ¢ [
ServoMotor Mount =< !Sky'l’aroeﬂ:i;eto
+ servoMotor B
<<use>>
0.4 0.1




e ITelescope &

TelescopeAlarm @

+ startup()

+ shutdown()

+ configure()

+ startDataTaking()

+ stoptDataTaking()

+ raiseAlarm()

+ lowerAlarm()

+ presetTarget(in source: SkyTarget)

+ presetTrackingTime(in time: double)

+ moveTo(in azimuth: double, in elevation: double)
+ slew()

+ stopSlew()

+ track()

+ stopTrack()

+ park()

+ stow()

+ unstow()

+ setTelescopeState(in state: ETelescopeStates)
+ getTelescopeStatus(): ETelescopeStates

+ getTimeToTarget()

+ getRemainingTrackingTime()

+ getTelescopeDatal()

+ publishTelescopeData(in samplingTime: double)
+ stopPublishTelescopeData()

+ assignToSubAmay(in ID: integer)

+ getMount(): <no type>

+ getAmc(): <no type>

+ getAux(): <no type>

- alarmld : integer

- alarmTime : long

- alarmPriornty : integer

- alarmFamily : string

- alarmFmember : string

- alarminfo : string

- alarmAckTime : long

- alarmSource : ETelescopeAssemblies [0..1]

+ getAlarmTime(): long

+ getAlarmFamily(): <no type>

+ getAlarmFmember(): <no type>

+ getAlarminfo(): string

+ getAlarmAckTime(): long

+ setAlarmTime(in alarmTime: long)

+ setAlarmFamily(in alarmFamily: <no type>)

+ setAlarmFmember(in alarmFmember: <no type>)
+ setAlarminfo(in alarminfo: <no type=>)

+ setAlarmAckTime(in alarmAckTime: long)

+ getAlarmid(): integer

+ getAlarmPriority(): integer

+ getAlarmSource(): ETelescopeAssemblies

+ setAlarmld(in alarmld: integer)

+ setAlarmPrionty(in alarmPrionity: integer)

+ setAlarmSource(in alarmSource: ETelescopeAssemblies)

&

E ETelescopeStates

OFFLINE

OPERATIONAL
MAINTENANCE
FAULT




Assembly Control system

Operations Engineering Station
management

level _—Programming IDE
——Database
\—Simulation environment

HMI . Controller

Industrial Ethernet

Control
level

Visualisation— g Control

Fieldbus

Field !
level
Control—

Drives Remote 1/Os

<<block>>
High-LevelControlSoftware

<<block>>
Assembly

<<block>>
Low-LevelControlSoftware

is deployed fo

I
is deployedto |
Vi

<<block>>

Assembly Control Unit (e.g PLC, ePC etc)

)

1.*
<<block>>
ControlDevice

1.*
<<block>>
SafetyDevice

<<block>>
SafetyLogic

is deployed to

<<block>>

Assembly Safety Unit

< <Block>>

Computer Room Area

is deployed to

<<block> >

Telescope Area




Hardware Devices

TCSControlDevicelmpl

fgres

(structure_

7/

TCSCartrdDevicelmgl

TCSHardwareDevicekmpl

testHwDevicelmpl ...

7)

TCSControlDevicelmpl

- container : <no type>
- deviceName : <no type>
+ m deviceList : <no type> [*

+ TCSControlDevicelmpl()

+ setContainer(in Name: <no type>, in cs: <no type>)

+ cleanUp()

- getSubdeviceReferance(in Name: <no type>): <no type>
+ clearSubdeviceError(in arg0: <no type>)

+ getDeviceReferenceName(): <no type>

+ getErrorMessage(): <no type>

+ getSubdeviceName(in arg0: <no type>): <no type>

+ inErrorState(): boolean

+ releaseSubdevices()

+ setSubdeviceErmor(in arg0: <no type>)

+ createSubdevices(in comp: <no type>, in parent: <no type>)

+ TCSControlDevicelmpi(in container2: <no type>, in deviceName2: <no type>) €t}

TCSHardwareDevicelmpl

TCSHardwareDevicelmpl

-container : <no type>

- deviceName : <no type>
“serialNumber : <no type>

# monitoring : boolean

# TelescopeLoc_m : <no type>
~ monitorCollector_m : <no type>
~ deviceState : <no type>

TCSHardwareControllerimpl

- container : <no type>
- deviceName : <no type>

+TCS iner: <no type>, in

+ TCSHardwareControflerimpl()
+ controllerOperational()

+ controllerShutdown()

+ getState(): <no type>

: <no type>) €
[

# hwStartAction()
# hwConfigureAction()

# hwinitializeAction()

# hwOperationalAction()

# hwStopAction()

# hwDiagnosticAction()

# hwSimulationAction()

# TCSHardwareDeviceImpl()

+ TCSHardwareDevicelmpl(in container2: <no type>, in deviceName2: <no type>)
+ initialize()

+ cleanUp()

+ getHwState(): <no type>

+ getSeralNumber(): <no type>

+ ? sn: <no type>)

testHwDevicelmpl

+ ragisterWith Collector()
+ i Sollector()

+ isMonitoring(): boolean
+ monitoring Off()

+ monitoringOn()

+ teshwConfigure()

+ teshwinitialize()

+ teshwOperational()

+ teshwStart()

+ teshwStop()

(4]
(2]

testHwDevicelmpl
-m_cs : <no type>
+ tastHwDevi iner: <no type>, in <no type>) €t
+ tastHwDeviceImpl() o

+ myMethod()
+ powerStatus(): <no type>




Hardware Device and TMCDB

CONTAINER 1 CONTAINER 2
Component 1 ----
g
== =
\
i ]
mmmmm $:|
[ emsEs = =) w e g
[Foptasontosts ]

Just an Example: You can replace MySQL
with any other DB engine.

The Hardware device already provide the basic methods to store
monitoring data in the Monitoring database

For prototyping and test you can just activate a monitor to each
desired property and store tables on files. A few python lines would be enough in this case.



Real Example: The Mount

Mountimpl

TCSHardwareDevice

MountHWDevicelmpl

-opc ur: <no type>

- ONTARGET : <no type>

- ONTRACKING : <no type>

- AZACTPOS : <no type>

- AZENCPOS : <no type>

- AZTELPOS : <no type>

- AZACTVEL : <no type>

- AZACTACC : <no type>

- AZACTDEC : <no type>

- AZACTJERK : <no type>

- AZENCODEROFFSET : <no type>
- AZPOSGEN : <no type>

- AZVELGEN : <no type>

- AZACCGEN : <no type>

- AZDECGEN : <no type>

- AZJERKGEN : <no type>

- AZMOTIONDIR : <no type>

- AZMOTORBRAKE : <no type>

- AZMOTORSTATUS : <no type>

- AZMASTERCURRENT : <no type>
- AZMASTERTEMP : <no type>

- AZMASTERTORQUE : <no type>
- AZSLAVECURRENT : <no type>
- AZSLAVETEMP : <no type>

- AZSLAVETORQUE : <no type>

- AZSERVOCOEFF1 : <no type>

- AZSERVOCOEFF2 : <no type>

- AZSERVOCOEFF3 : <no type>

- AZSERVOCOEFF4 : <no type>

- AZSERVOCOEFFS5 : <no type>

- ELACTPOS : <no type>

- ELACTVEL : <no type>

- ELACTACC : <no type>

- ELACTDEC : <no type>

- ELACTJERK : <no type>

- ELENCPOS : <no type>

- ELENCODEROFFSET : <no type>
- ELGENPOS : <no type>

- ELGENVEL : <no type>

- ELGENACC : <no type>




ACTL SLOW DATA Model and Hardware
device ICD

 An Hardware Devices is an ACS component, that
implements the ICD of that device. Its just that:
Monitor Points (MPs) and Control/Set Points
(CPs) for each entry in the ICD.

e Each Hardware device uses OPC-UA Node
address to be able to communicate with a
particular MP and extract its value, or to
command a certain CP to a new value.

* CONTROL devices also include whatever lifecycle,
transformation of data, and specials
programming that the ICD specifies.



ACTL-SLOW Data Model

The data model for a given hardware device contains
important information and serves the following practical
purposes:

* Provide a conceptual description of the objects in the
system and their relationships.

* Provide a blueprint for creating the TMCDB database
structure.

* Guide implementation of code units that access the
database.

e Serve as input for automatic generation of database
schema and data access code.

e Define the contents of the ICDs



Data Model and OPC-UA

Data Model for each hardware device in the System is
very important because parts of their OPC UA servers

may be automatically generated.

In this way hand-written custom code is only necessary
for providing business logic between the generated parts
and software handling the specific device type (e.g. a
hardware access library or protocol implementation for
an physical device).

Higher level business logic can be implemented in the
ACS hardware device side.



Data Model and OPC-UA

r
i OPC-UA server

1
: generator framework

OPC-UAclient OPC-UA client OPC-UA client

........................................

1 c | ¢ Commercial toolkit
1 ommon | SeenshaERARsaERsenEsuARseEsunsnsenssit
L namespace | \Sever |\
XML ] Logging items and et I ¢ Common components
i configuration certificate R e
config I 1 handling) namespace :
file E utilities : sessssasssnnnaae aseesssns T—
: POVVTTVVVUOOUIPPIE ¢ o v v vvoodlberrsssccccsccessesssssceee SOUID Warnaqeent USEI’SDElelC|OgIC,
! Device logic (cystom code) '. Expected ~80/20

_ i Generated/User split

Hardware access layer (device 1/0)
e T e OO

“.¢ 100% vendor :
Hardware Hardware Hardware ....................................... .

Figure 1. Overview of the generic server framework components.
Development can starts with creation the data model (or design) , in XML, or
other format , describing an object-oriented information model of the target
system or device.

Here we propose a path to define the main data items or entities of the hardware
device for the OPC-UA server and for its mapping in the ACS High level components.

These information will be then used by ACTL-Slow to design the ACTL repository.




Uniform CPs & MPs definition

* |In order to define an uniform naming convention
for the control and monitor points of the
telescope, the first step is to use the telescope
Product tree document to extract the list of the
Assemblies, Component and parts.

* From this we can extract the list of common
devices (eg. Motors, 1/0) and the list of the
measurement, command, safety and
configuration data items (in an abstract way).

* |n conclusion we need to define the Data Model
associated with all Hardware device of the
Telescope Array.



1-The Hardware device Hierarchy

Telescope

[ ASSEMBLY ] [ ASSEMBLY ]

| I

I I

[ Component 1 ] [ Component 2 J
| I

Part 1 | Part2 I | Part 1 I Part2
[ I I I I |

[ Sensor ] [ Actuator ] [ Sensor ] [ Actuator ] [ Sensors ] [ Actuators ] [ actuatorl ] [ actuator 2 ]

ASSEMBLY

We would ask Telescope teams to provide their hardware device hierarchy



Example of a hardware device internal hierarchy

ACS Framework

ACS OPC UA DevlO

PEMeter
Module

Led Driver
Module

g
Camera OPC UA Server

Engineering GUI

7'

v

Camera OPC UA Client

a

I 4
FEE/BEE CTRL
Module
GPS Thermal CTRL
v
Module Module VDB Module
e

A. Grillo, P. Bruno - ASTRI MASS Meeting -
Perugia, 03-04 Feb 2016

39




Example of a Hardware device Hierarchy with the variables associated to
each component and parts

MOUNT TREE COMPONENTS — HARDWARE MONITORING

MOUNT
o TCU(PLC)
= DIGITAL I/O (switches)
v’ Lyre - Status (on/off)
AZ CW proximity switch - status (on/off)
AZ CCW proximity switch - status (on/off)
AZ park position proximity switch — status (on/off)
EL horizon proximity switch - status (on/off)
EL zenith proximity switch - status (on/off)
v’ EL park position proximity switch - status (on/off)
= AZ ENCODERS (Incremental strip encoder — AZ actual position)
v' ENCODER1 - Status, Latch, Count
v' ENCODER?2 - Status, Latch, Count
¥v' ENCODERS - Status, Latch, Count
v' ENCODERA4 - Status, Latch, Count
= EL ENCODER (Absolute - EL actual position)
¥’ Status, Latch, Count
= SERVO
v" AZ MOTOR1
_ Temperature, Current, Torque, Brake.
_ acceleration, deceleration, jerk, direction
v" AZ MOTOR2
_ Temperature, Current, Torque.
_ acceleration, deceleration, jerk, direction
v ELMOTOR
_ Temperature, Current, Torque, Brake.
_ acceleration, deceleration, jerk, direction
= SERVO DRIVES
v' AZ SERVO1 - status (e.g. enabled, disabled, operative)
v' AZ SERVO2 - status (e.g. enabled, disabled, operative)
v ELSERVO - status (e.g. enabled, disabled, operative)

AN NN S

= FIELDBUS
v EtherCAT Master — status and NeglR,
v EtherCAT Slaves — status and address
(e-g. Digital /0 modules, encoder interfaces, servo drive interfaces)

o THCU (PLC)
= SAFETY DIGITALI/O (Interlocks)

v" AZ CW Operational limit switch — status
AZ CW Emergency limit switch — status
AZ CCW Operational limit switch — status
AZ CCW Emergency limit switch — status
AZ park position limit switch - status
AZ stow pin insertion limit switch — status
AZ stow pin extraction limit switch — status
EL horizon Operational limit switch — status

AN YR N N N

EL horizon Emergency limit switch — status
EL zenith Operational limit switch — status

EL zenith Emergency limit switch — status

EL park position limit switch - status

EL stow pin insertion limit switch — status

EL stow pin extraction limit switch — status
Door base emergency switch — status

Door cabinets emergency switch — status
Emergency Stop1l mushroom — status
Emergency Stop2 mushroom — status
Emergency Stop3 mushroom — status

AZ motor safe Stop (24 V to the drive) - status
EL motor safe Stop (24Vto the drive ) - status

A VAN N N N N N N Y VN N NN

= DIGITALI/O (Status of the Telescope devices)
Motors high voltage on/off — status
Camera on/off — status

Data Logger on/off — status

Mirrorl on/off — status

Mirror2 on/off — status

Pointing Monitor Camera on/off — status
Camera Thermal Control on/off — status
Main Disconnector on/off — status

Sky Quality Meter on/off — status
LMSiPM, on/off — status

UMScapg on/off — status

Active Mirror Control Unit on/off — status
Telescope Control Unit on/off — status
SQM-PMC Heather on/off — status

AN

A VAN N N N N N A YA

= ANALOG I/O
v" HPC Cabinet Temperature
v LPC Cabinet Temperature
= POWER MEASUREMENT

(This terminal enables the measurement of all relevant electrical data of the supply

network.)
v' HIGH-VOLTAGE PHASE 1 - current, voltage, power, energy, cospbi,
frequency
v HIGH-VOLTAGE PHASE 2 — current, voltage, power, energy, cospbi,
frequency
v' HIGH-VOLTAGE PHASE 3 — current, voltage, power, energy, cospbi,
frequency
= FIELDBUS
v EtherCAT Master — status and BeflR,
v EtherCAT Slaves — status and address
(e.g. Digital I/O modules, power modules, safety logic modules)



Hardware device Hierarchy in OPC-UA

Code generator

OPC UA Information Model (XML other format file)

Devices
OPC UA Server Engineering tool
Controller 3 Controller 2 Controller

0000 | v Dﬁ&, A7\ . |onooe,
. import create L
ﬂ’ \ Data |0s ,,' ﬂ’

\ U4
~ ;’
~ Laser scanner Photo sensor Remote 10 (_—
Data Data 10s
Sensor Sensor

Shon Gdnn

Data Data



Naming Convention

* |deally each Data Items in CTA should have a unique
name.

 We propose to follow a hierarchical approach to define
the name of each data items.

Site.telescope.assembly.opc_ua_device.opc_ua _node_na
me.

Es.
CTAS.MSTO1.MOUNT.DVR.AZ MOTORO1_VEL

CTAS.MSTO1.MOUNT.PWR.PhL_Current

For each Dataltem: value, timestamp, quality (good, bad)



Next Steps

Dedicated meeting with all the Telescope and Camera
teams to enter in the details of what we discussed
today.

Definition of a abstract hardware device hierarchy for
all telescope (and standard names and abbreviation
for them) (slow do this proposal based on the
information collected from the telescopes)

Definition of an abstract model for sensors, digital |/O
and actuators that are common to all hardware device

Definition of the common Monitor, control, safety and
configuration data items.

Final definition of the naming convention



How to Organize the work

1. We suggest that after we agreed on the abstract hardware device hierarchy, the expert of each
hardware device of each telescope team sit together (coordinated by ACTL-SLOW) to

1. Define the abstract model for sensors, digital I/0O and actuators that are common to all hardware device
2. Define of the common Monitor, control, safety and configuration data items.
3. Define an abstract model for UPC-UA information model for each Hardware device.

2. ACTL Slow and telescope teams will define the ICD tables (for each hardware device) that can
then extended telescope by telescope to allocate specific Data Items. The ICD tables will take
into account of both ACS and OPC-UA characteristics and will contain only definition of monitor,

control, safety and configuration Data Items.

3. ACTL-SLOW will adapt the code generator to

1. Develop a prototype application for each hardware device using the code generator including:
1. OPC-UA server Information model. This will be the Hardware device simulator used to test the ICD
2. ACS hardware device component and unit test.
2. Telescope teams will test the prototypes
3. Telescopes teams will extends the Hardware device to include the business logic related to each specific

Hardware device.

These botton-up activities will be complemented by the top-down approach consisting in the final High
level Interfaces at the Telescope and the development of the general level 0 ACTL-SLOW prototype.

This interface will be formalized in IDLs files in the ACS framework.



Schedule

* Next day we will circulate a possible schedule
for the proposed activities in order to arrive to
the Perugia F2F meeting, where:

— we can summarize the status of this work and
start Develop/testing the first hardware devices,

— Work on and Test the first prototype of ACTL-
SLOW software (limited to the implementation of
the high level telescope interface and a basic
Master Components).



