
Preliminary	ACTL-SLOW	Design	in	
the	ACS	and	OPC-UA	context	

G.	Tos?	
(19/04/2016)	



Summary	
•  General	Introduc?on	to	ACS		
•  Preliminary	ACTL-SLOW	proposed	design	
•  Hardware	device	integra?on	in	ACS	and	ACTL-
SLOW	

•  Monitor	and	Control	Points:	
– How	to	define	them	in	an	uniform	way	
– Naming	Conven?on	

Modifica?on	to	what	is	reported	here	could	happen	based	on		
the	ongoing	defini?on	of	the	ACTL	Architecture	and	of	the	ACTL-OPS	/ACTL-SLOW	interface.	
	
All	reported	here	will	be	then	formalized	in	ACTL-SLOW	the	design		
document	that	will	be	a	live	document	shared	with	all	telescope	teams.	



Take	advantages	from	diversity	



Take	advantages	from	diversity	



Take	advantages	from	diversity	

MST	



Custom	solu?on	mostly	based	on	LabView	

Take	advantages	from	diversity	



Take	advantages	from	diversity	



Take	advantages	from	diversity	



SST-1M	

Take	advantages	from	diversity	



So#ware	

Deployed	in	Serra	La	Nave	 Working	in	Lab	

Take	advantages	from	diversity	

SST-2M	



ASTRI/CTA	Prototype	and	Pre-produc?on	Array	Control	System	

Alma	Common	so#ware	for	
the	higher	level	systems	

11	

OPC-UA	for	the	control	of	
the	Hardware	Devices	

ACTL	–	SLOW	and	The	Industrial	Control	System	Pyramid	

The	discussion	will	proceed	top-dow.	



Alma	Common	So#ware	(ACS)	Infrastructure	
•  The	ACS	Environment	

12	

ACS	uses		CORBA	as	middleware	and	provides:	
• 	Applica?on	communica?on	handling:	
• 	Event	Handling:	
• 	Command:	
• 	Logging:	
• 	Persistent	Store:		
• 	Error/Alert	Handling:	



ACS	Core	Components	
The	components	that	are	necessary	for	the	development	of	any	applica?on	
are		
	
•  ACS	Component	Base	interfaces	and	classes	for	Component	part	of	the	

ACS	Component	Model.	In	par?cular	C++	Distributed	Objects,	Proper?es	
and	Characteris?cs	are	implemented	in	this	package.		

•  ConfiguraDon	Database	Interfaces	and	basic	implementa?on	for	the	
Configura?on	Database	from	where	ACS	Components	retrieve	their	ini?al	
configura?on		

•  Event	and	NoDficaDon	System	The	Event	and	No?fica?on	System	
provides	a	generic	mechanism	to	asynchronously	pass	informa?on	
between	data	publishers	and	data	subscribers,	in	a	many	to	many	rela?on	
scheme.		

•  Error	System	API	for	handling	and	logging	run?me	errors,	tools	for	
defining	error	condi?ons,	tools	for	browsing	and	analyzing	run?me	errors.	

•  Logging	System	API	for	logging	of	data,	ac?ons	and	events.	Transport	of	
logs	from	the	producer	to	the	central	archive.	Tools	for	browsing	logs.		

•  Time	System	Time	and	synchroniza?on	services.		



ACS	Services		

This	services		are	not	strictly	necessary	for	the	development	of	prototypes	and	test	:	
•  ACS	Container	Design	pa`erns,	protocols	and	high	level	services	for	Component/

Container	lifecycle	management.		
•  SerializaDon	Plugs	This	package	provides	a	generic	mechanism	to	serialize	en?ty	

data	between	high	level	applica?ons,	typically	wri`en	in	Java.		
•  Archiving	System	API	and	services	for	archiving	monitoring	data	and	events	from	

the	run	?me	system.	Tools	to	browse,	monitor	and	administer	the	flow	of	data	
toward	the	archive.		

•  Command	System	Tools	for	the	defini?on	of	commands,	API	for	run?me	
command	syntax	checking,	API	and	tools	for	dynamic	command	invoca?on.		

•  Alarm	System	API	and	tools	for	configura?on	of	hierarchical	alarm	condi?ons,	API	
for	reques?ng	no?fica?on	of	alarms	at	the	applica?on	level,	tools	for	displaying	
and	handling	the	list	of	ac?ve	alarms.		

•  Sampling	Low	level	engine	and	high	level	tools	for	fast	data	sampling	(virtual	
oscilloscope).		

•  Bulk	Data	API	and	services	for	the	transport	of	bulk	science	data	(images	or	big	
data	files)	and	con?nuous	data	streaming.		



ACS	Container-Component		Model	
•  This		is	the		primary	instrument	for	achieving	separa?on	of	func?onal	from	

technical	concerns.	

•  Every	Component	must	implement	the	ComponentLifeCycle	interface.	This	
interface	foresees	the	following	basic	lifecycle	opera?ons:	

•  ini?alize	–	called	to	give	the	component	?me	to	ini?alize	itself,	e.g.	retrieve	
connec?ons,	read	configura?on	parameters,	etc		

•  execute	–	called	ader	ini?alize()	to	tell	the	component	that	it	has	to	be	ready	
to	accept	incoming	func?onal	calls	any	?me		

•  cleanup	–	the	component	should	release	resources	in	an	orderly	manner,	
because	shutdown	is	imminent		

•  aboutToAbort	–	the	component	will	be	forcibly	removed	due	to	some	error	
condi?on.		

•  The	Container	passes	to	each	Component	a	ContainerServices	object.	At	that	
point,	the	Component	can	assume	that	all	infrastructural	services	it	may	
need	have	been	properly	set	up	by	the	Container	and	are	available	via	the	
ContainerServices	object.	

Container 

C
om

po
ne

nt
 

C
om

po
ne

nt
 



Characteris?c	Components	
•  Characteris?c	Components	are	a	subclass	of	Components	

tailored	to	the	implementa?on	of	objects	that	describe	
collec?ons	of	numerical	(typically	physical)	quan??es.	They	
have	been	designed	in	par?cular	to	represent	Control	
System	objects	with	monitor	and	control	points	or	objects	
with	state	and	configurable	parameters?Characteris?c		

•  At	control	system	level,	Characteris?c	Component	is	the	
base	class	used	for	the	representa?on	of	any	physical	(a	
temperature	sensor,	a	motor)	or	logical	device	in	the	
control	system.		

•  Higher	level	applica?ons	can	use	Characteris?c	
Components	to	implement	any	Component	that	has	
configurable	values	represen?ng	numerical	quan??es.			



Proper?es	
•  Each	Characteris?c	Component	has	0..n	Proper?es	that	are	monitored	and	

controlled,	for	example	status,	posi?on,	velocity	and	electric	current.		

•  Proper?es	can	be	read	only	or	read/write.		
•  Proper?es	can	represent	values	using	a	limited	set	of	basic	data	types:	
•  long,	longLong	and	uLongLong	for	integers		
•  double	for	floa?ng	point	numbers		
•  string	for	strings.		
•  enum	for	enumera?ons	like	states.	This	includes	a	boolean	TRUE/FALSE	

enumera?on.		
•  sequence<scalar	property>	of	one	of	the	previously	defined	scalar	

property	types.	For	example	a	sequence<long>	allows	manipula?ng	a	
group	of	proper?es	of	type	long.	Each	item	in	the	list	can	be	assigned	to	a	
long	property	object	and	manipulated	(reading	characteris?cs	and	value)	
independently	from	the	others.		



Characteris?cs	
•  Sta?c	data	associated	with	a	Characteris?c	
Component	or	with	a	Property,	including	
metadata	such	as:	

•  name,	descrip8on,	version	and	dimensions	
•  other	data	such	as	units,	range	or	resolu8on.	
Each	Characteris?c	Component	or	each	Property	
has	0..n	Characteris?cs	

•  Characteris?c	Components	and	Proper?es:	
Name,	Descrip?on,	Version	etc.	

•  Readonly	and	Read/Write	Proper?es:	default	
values,	range,	units,	format,	resolu?on		





Proper?es	&	Hardware	
•  The	classes	implemen?ng	the	Property	interfaces	are	responsible	for	the	

actual	interfacing	with	the	hardware	or,	more	in	general,	to	retrieve/
calculate	the	value	for	the	numerical	en??es.	In	order	to	decouple	as	
much	as	possible	the	implementa?on	of	Property	classes	and	the	access	
to	different	kinds	of	data	sources,		ACS	provides	a	parametrized		Property	
implementa?on	based	on	the	DevIO	parameter,		

	
	
•  A	DevIO	implementa?on	is	responsible	only	for	reading/wri?ng	the	

Property’s	value	from	a	specific	device	(memory	loca?on,	OPC-UA	nodes	
in	CTA).	

	
	
•  The	configura?on	parameters	for	all	Characteris?c	Components,	i.e.	the	

ini?al	values	for	Proper?es	control	values	and	all	Characteris?cs	for	
Proper?es,	are	persistently	stored	in	the	Configura?on	Database.		



DevIO	



Func?onal	block	assigned	to	slow	



ASTRI/CTA	Prototype	and	Pre-produc?on	Array	Control	System	

Alma	Common	so#ware	for	
the	higher	level	systems	

24	

OPC-UA	for	the	control	of	
the	Hardware	Devices	

ACTL	–	SLOW	and	The	Industrial	Control	System	Pyramid	



ACTL-SLOW	Context	







Assembly	Control	system	



Hardware	Devices	



Hardware	Device	and	TMCDB	

The	Hardware	device	already	provide	the	basic	methods	to	store		
monitoring	data	in	the	Monitoring	database	
For	prototyping	and	test	you	can	just	ac?vate	a	monitor	to	each		
desired	property	and	store	tables	on	files.	A	few	python	lines	would	be	enough	in	this	case.	

Just	an	Example:	You	can	replace	MySQL	
with	any	other		DB	engine.		



Real	Example:	The	Mount		



ACTL	SLOW	DATA	Model	and	Hardware	
device	ICD	

•  An	Hardware	Devices	is	an	ACS	component,	that	
implements	the	ICD	of	that	device.	Its	just	that:	
Monitor	Points	(MPs)	and	Control/Set		Points	
(CPs)	for	each	entry	in	the	ICD.	

	
•  Each	Hardware	device	uses	OPC-UA	Node	
address	to	be	able	to	communicate	with	a	
par?cular	MP	and	extract	its	value,	or	to	
command	a	certain	CP	to	a	new	value.		

•  CONTROL	devices	also	include	whatever	lifecycle,	
transforma?on	of	data,	and	specials	
programming	that	the	ICD	specifies.	

33	



ACTL-SLOW	Data	Model	
The	data	model	for	a	given	hardware	device	contains	
important	informa?on	and	serves	the	following	prac?cal	
purposes:	
	
•  Provide	a	conceptual	descrip?on	of	the	objects	in	the	

system	and	their	rela?onships.	
•  Provide	a	blueprint	for	crea?ng	the	TMCDB	database	

structure.	
•  Guide	implementa?on	of	code	units	that	access	the	

database.	
•  Serve	as	input	for	automa?c	genera?on	of	database	

schema	and	data	access	code.	
•  Define	the	contents	of	the	ICDs	
	



Data	Model	and	OPC-UA	
Data	Model	for	each	hardware	device	in	the	System	is	
very	important	because	parts	of	their	OPC	UA	servers	
may	be	automa?cally		generated.		
	
In	this	way		hand-wri`en	custom	code	is	only	necessary	
for	providing		business	logic	between	the	generated	parts	
and	sodware	handling	the	specific	device	type	(e.g.	a	
hardware	access	library	or	protocol	implementa?on	for	
an	physical	device).	
	
Higher		level	business	logic	can	be	implemented	in	the	
ACS	hardware	device	side.	
	
	
	
	



Data	Model	and	OPC-UA	

Here	we	propose	a	path	to	define	the	main	data	items	or	en??es	of	the	hardware	
device		for	the	OPC-UA	server	and	for	its	mapping	in	the	ACS	High	level	components.	
These	informa?on	will	be	then	used	by	ACTL-Slow	to	design	the	ACTL	repository.	

Development	can		starts	with	crea?on	the	data	model	(or	design)	,	in	XML,	or	
other	format	,	describing	an	object-oriented	informa?on	model	of	the	target	
system	or	device.	



Uniform	CPs	&	MPs	defini?on			
•  In	order	to	define	an	uniform	naming	conven?on	
for	the	control	and	monitor	points	of	the	
telescope,	the	first	step	is	to	use	the	telescope	
Product	tree	document	to	extract	the	list	of	the	
Assemblies,	Component	and	parts.		

•  From	this	we	can	extract	the	list	of		common		
devices	(eg.	Motors,	I/O)	and	the	list	of	the	
measurement,	command,	safety	and	
configura?on	data	items	(in	an	abstract	way).	

•  In	conclusion	we	need	to	define	the	Data	Model	
associated	with	all	Hardware	device	of	the	
Telescope	Array.	



1-The	Hardware	device	Hierarchy	

We	would	ask	Telescope	teams	to	provide	their	hardware	device	hierarchy	



ACS	Framework	

Example	of	a	hardware	device	internal	hierarchy	

A.	Grillo,	P.	Bruno	-	ASTRI	MASS	Mee?ng	-	
Perugia,	03-04	Feb	2016	 39	

	Lid	
Module	

Fiber	
Module	

PEMeter	
Module	

Camera	OPC	UA	Server	

Camera	OPC	UA	Client	

Engineering	GUI	

ASTRI	
Camera	

Led	Driver	
Module	

	FEE/BEE	CTRL	
Module	

ACS	OPC	UA	DevIO		

Ancillary	Devices	

GPS	
Module	

	Thermal	CTRL	
Module	 	VDB	Module	



Example	of	a	Hardware	device	Hierarchy	with	the	variables	associated	to	
each	component	and	parts	



Hardware	device	Hierarchy	in	OPC-UA	
Code	generator	

(XML	other	format	file)	



Naming	Conven?on	
•  Ideally	each	Data	Items	in	CTA	should	have	a	unique	
name.	

•  We	propose	to	follow	a	hierarchical	approach	to	define	
the	name	of	each	data	items.	
	

Site.telescope.assembly.opc_ua_device.opc_ua_node_na
me.	
Es.	

	CTAS.MST01.MOUNT.DVR.AZ_MOTOR01_VEL	
					CTAS.MST01.MOUNT.PWR.PhL_Current	
	
For	each	DataItem:	value,	?mestamp,	quality	(good,	bad)	



Next	Steps	
•  Dedicated	mee?ng	with	all	the	Telescope	and	Camera	
teams	to	enter	in	the	details	of	what	we	discussed	
today.		

•  Defini?on	of	a	abstract	hardware	device	hierarchy	for	
all	telescope		(and	standard	names	and	abbrevia?on	
for	them)	(slow	do	this	proposal	based	on	the	
informa?on	collected	from	the	telescopes)	

•  Defini?on	of	an	abstract	model	for		sensors,	digital	I/O	
and	actuators	that	are	common	to	all	hardware	device	

•  Defini?on	of	the	common	Monitor,	control,	safety	and	
configura?on	data	items.	

•  Final	defini?on	of	the	naming	conven?on	
	



How	to	Organize	the	work	
1.  We	suggest	that		ader	we	agreed	on	the	abstract	hardware	device	hierarchy,	the	expert	of	each	

hardware	device	of	each	telescope	team	sit	together	(coordinated	by	ACTL-SLOW)	to		
1.  Define	the	abstract	model	for		sensors,	digital	I/O	and	actuators	that	are	common	to	all	hardware	device	
2.  Define	of	the	common	Monitor,	control,	safety	and	configura?on	data	items.	
3.  Define	an	abstract	model	for	UPC-UA	informa?on	model	for	each	Hardware	device.	
	

2.  ACTL	Slow	and	telescope	teams	will	define	the	ICD	tables	(for	each	hardware	device)	that	can	
then	extended	telescope	by	telescope	to	allocate	specific	Data	Items.	The	ICD	tables	will	take	
into	account	of	both	ACS	and	OPC-UA	characteris?cs	and	will	contain	only	defini?on	of	monitor,	
control,	safety	and	configura?on	Data	Items.	

3.  ACTL-SLOW	will	adapt	the	code	generator	to			
1.  Develop	a	prototype	applica?on	for	each	hardware	device	using	the	code	generator	including:	

1.  OPC-UA	server	Informa?on	model.	This	will	be	the	Hardware	device	simulator	used	to	test	the	ICD	
2.  ACS		hardware	device	component		and	unit	test.	

2.  Telescope	teams	will	test	the	prototypes	
3.  Telescopes	teams	will	extends	the	Hardware	device	to	include	the	business	logic	related	to	each	specific	

Hardware	device.				
	

These	bo`on-up	ac?vi?es	will	be	complemented	by	the	top-down	approach	consis?ng	in	the	final	High	
level	Interfaces	at	the	Telescope		and	the	development	of	the	general	level	0	ACTL-SLOW	prototype.			
This	interface	will	be	formalized	in		IDLs	files	in	the	ACS	framework.	



Schedule	
•  Next	day	we	will	circulate	a	possible	schedule	
for	the	proposed	ac?vi?es	in	order	to	arrive	to	
the	Perugia		F2F	mee?ng,	where:	
– we	can	summarize	the	status	of	this	work	and	
start	Develop/tes?ng	the	first	hardware	devices,	

– Work	on	and	Test	the	first	prototype	of		ACTL-
SLOW	sodware	(limited	to	the	implementa?on	of	
the	high	level	telescope	interface	and	a	basic	
Master	Components).			


