

Modeling Particles in the ISM

Including the ISM's Influence on the Spatial Distribution of Protons

Robert Koenig

April 13th, 2022

Gamma-Ray Production

Modeling particles in the ISM

Sabrina Einecke @ CTA-Oz Nov. 2021 https://indico.cta-observatory.org/event/3712/contributions/31509/

9°00' 8°30' 00' 7°30'

Galactic Longitude

00' 7°30'

Galactic Longitude

00

Modeling Particles in the ISM | S. Einecke

Conclusion

Future additions:

Neutrinos

Future plans:

partISM:

THE UNIVERSITY **of ADELAIDE**

Motivation

Current state:

Diffusion coefficient (and therefore diffusion lengths)

the same for the whole map

Reality:

Diffusion coefficient position dependent

Diffusion Coefficient

Can be estimated by number density of ISM (Crutcher)

Expectation:

- Diffusion length decreases with increasing magnetic field
- Higher proton/gamma-ray density in areas of higher magnetic fields

Regions with different number densities

Accelerator in the centre

Comparison of models - Gas map

Comparison of models - Proton Distribution

Comparison of models - Gamma-ray Flux

Conclusion

Achievments:

- Implementation of position-dependent diffusion lengths in partISM
- Obtaining a position-dependent proton distribution

Next steps:

- Use a numerical solution of the transport equation for a comparison model
- Validate my analytical model on the results of the numerical solution

Future plans:

- General modeling of all SNRs
- Detailed modeling of few regions with PeVatron candidate SNRs