

Quantifying Potential New Sites for IACTs in Australia

Cross Checks with Data from Siding Spring Observatory

Paddy McGee, Sabrina Einecke

Nov 22nd, 2021

Siding Spring Observatory (SSO)

- Located on Mount Woorut (~1160 m)
- 27 km west of Coonabarabran, NSW
- Record of weather data (courtesy of James Cameron, ANU)
 - 2011 2020: Temperatures, humidity, rainfall, dew point, pressure, brightness, sky meter temperature (every 10 minutes)
 - 2018: All Sky Camera Images (every 0.5 minutes)

SSO: Nightly Weather Data (selection)

clear or mostly clear, no rain

intermittent

SSO: Wind

CTA requirements

- Survival wind gusts: Damage beyond Serviceability Limit State must not occur due to wind gusts of up to 170 km/h
- Survival wind speed: Damage beyond Serviceability Limit State must not occur due to 10 minute average wind speeds of up to 100 km/h

(Serviceability Limit State: Damage can be repaired in-situ using available spare parts and a normal level of on-site manpower.)

SSO: Rain

monthly average of % of time during the night when rainfall was recorded (for 2018)

Ö

SSO: Clouds

- Boltwood passive IR cloud monitor (single-channel, pointed slightly off zenith)
 - 8-14 microns
 - temperature difference relative to the ground temperature
 - approx. +-40 degree angle of main sensitivity
- clear sky cooler than cloudy sky
- also has rain/wetness sensor, brightness meter
- nominal value sky temperature < -25° C taken to indicate clear skies
 - manual notes that these limits should be checked/set for each site
- slightly inclined from zenith to allow water run-off (manual says 10 degrees)
- don't know in which direction it points
- also data from a Unihedron Sky Quality Meter (sky brightness in mag./sq. arc-second)
- the main interest is to get a ground-based cross-check of downward-looking MODIS-based cloudiness estimates
 - how reliably can MODIS-only measurements be used to characterised site cloudiness?

SSO: Clouds (based on Boltwood sky temperatures)

OUR Definition of Cloud Flags

- Very cloudy (= 0): > -10 °C
- Probably cloudy (= 1): > -25 °C & > -10 °C
- Probably clear (= 2): < -25 °C & > -30 °C
- Clear (= 3): < -30 °C</p>

- generally rains when skies are warmer, i.e. cloudy
- but tails to each distribution
 - variability in nightly conditions

MODIS: Clouds

MODIS data can be used to generate maps of its supplied cloud masks, i.e. maps of cloudiness over an area

a MODIS pixel is 1 km-square

Definition of Cloud Flags (Masks)

- Very cloudy: 0
- Probably cloudy: 1
- Probably clear: 2
- Clear: 3

- MODIS cloud masks: "_avg" = average over 10km-radius circle; "_pix" = single MODIS pixel
- perfect agreement = dots follow the lines
- most discrepancies = SSO less cloud indicated (by sky temps) than MODIS indicates
 Quantifying Australian IACT sites | P. McGee & S. Einecke

100 # of MODIS good agreement under clear cloudy passes in 2018 conditions (also - 80 high proportion of clear nights) uncertain clear · 60 MODIS also agreement for very cloudy 40 conditions probably clear but quite a few 20 "MODIS cloudy" confident clear matched by "SSO probably clear"... 0 clear (-30C) very cloudy (-10C) SSO Sky Amb / deg (Comparison performed for 2018)

	sso_UTC+10	sso_cloudflag	modis_cmask_1	modis_height
	2018-10-14 01:10:00	3.0	0.0	1750.0
	2018-10-15 23:20:00	3.0	0.0	9200.0
	2018-10-16 00:50:00	3.0	0.0	11750.0
	2018-10-26 01:30:00	3.0	1.0	2250.0
	2018-10-28 22:50:00	3.0	2.0	-999.0
	2018-11-03 22:10:00	3.0	0.0	12200.0
	2018-11-04 01:20:00	3.0	0.0	10200.0
	2018-11-04 23:00:00	3.0	1.0	2250.0
	2018-11-12 22:10:00	3.0	0.0	2800.0
	2018-11-12 23:40:00	3.0	1.0	1750.0
	2018-11-24 22:30:00	3.0	0.0	16300.0
	2018-11-27 01:30:00	3.0	1.0	1900.0
	2018-11-27 23:00:00	3.0	1.0	1900.0
	2018-12-03 22:20:00	3.0	0.0	9500.0
	2018-12-04 01:40:00	3.0	0.0	3050.0
	2018-12-05 22:10:00	3.0	1.0	2050.0
Australian	2018-12-21 22:10:00	3.0	1.0	2750.0

SSO sky temp (sso_cloudflag) says "clear", but MODIS single-pixel cloud mask says "cloudy"

SSO: Cirrus visible in ASC images (but sky temp says clear)
MODIS: High clouds
All good

SSO: Clear overhead in ASC image (and sky temp says clear) MODIS: Cloud detected around SSO --> All good

SSO: Cloudiness (based on sky temperatures)

MODIS: Cloudiness

How good is the extrapolation from 1-2 nightly measurements to entire night?

- Cloudy nights: 24%
- Cloudy nights extrapolated: 39%
- Clear nights: 39%
- Clear nights extrapolated: 56%

~30% uncertainty from extrapolation

(Cloudy night = fraction of clear night < 10%)
(Clear night = fraction of clear night > 90%)

Caveat about Boltwood cloud sensor "clear" sky temperatures

- some MODIS passes showed inconsistencies between MODIS and SSO sky-temperature cloud flags (using Boltwood ground-based passive IR cloud monitor)
- e.g. MODIS indicated the presence of cloud, but SSO sky-temps suggested clear skies
- the conditions we use for SSO cloud monitor flags are:
 - very cloudy (0): > -10° C
 - probably cloudy (1): > -25° C
 - probably clear (2): < -25° C</p>
 - clear (3): < -30° C</p>
- SSO nominally < -25° C taken as clear skies (stated on the page referred to below)
- we adopted < -30° C for clear skies, as looking at the real-time AAT weather page at <u>http://aat-ops.anu.edu.au/AATdatabase/met.html</u> showed some cloud still around on occasions at ~ -25° C

	sso_UTC+10	sso_Sky-Amb	sso_cloudiness	sso_cloudflag	modis_10km_cmask_1
465	2018-10-14 01:10:00	-35.5	0.861538	3.0	0.246154
468	2018-10-15 23:20:00	-34.6	1.000000	3.0	0.000000
469	2018-10-16 00:50:00	-31.4	1.000000	3.0	0.000000
489	2018-10-26 01:30:00	-42.3	1.000000	3.0	0.686567
492	2018-10-28 22:50:00	-35.4	0.539683	3.0	1.000000
504	2018-11-03 22:10:00	-40.5	1.000000	3.0	0.000000
505	2018-11-04 01:20:00	-41.1	1.000000	3.0	0.000000
506	2018-11-04 23:00:00	-33.3	0.983607	3.0	0.807229
520	2018-11-12 22:10:00	-36.2	0.916667	3.0	0.117647
521	2018-11-12 23:40:00	-36.4	0.916667	3.0	1.000000
542	2018-11-24 22:30:00	-30.5	0.482759	3.0	0.000000
545	2018-11-27 01:30:00	-34.5	0.465517	3.0	0.808824
546	2018-11-27 23:00:00	-32.5	0.467742	3.0	0.662338
555	2018-12-03 22:20:00	-33.0	1.000000	3.0	0.000000
556	2018-12-04 01:40:00	-39.1	1.000000	3.0	0.100000
559	2018-12-05 22:10:00	-35.6	1.000000	3.0	1.000000
586	2018-12-21 22:10:00	-38.2	1.000000	3.0	0.888889

- the numbers after pass ID and time are
 - sky temp (° C) : nominally < -30° C taken to be clear skies</p>
 - sso_cloudiness = fraction of night with temp-derived cloud flag >= 2 (a higher value = more of the night is clear, i.e. 1 is clear all night)
 - sso_cloud_flag (based on sky temps, as defined earlier)
 - modis_10km_cmask_1 is an average of the following MODIS cloud flags (a MODIS pixel is 1km-square) taken over a 10km-radius circle centred on SSO, based on the following
 - 0 = very cloudy
 - 1 = probably cloudy
 - 2 = probably clear
 - 3= clear
 - but, as an average is taken, the value may not be an integer
 - all values in the table indicate the presence of significant amounts of cloud in the MODIS data

- for these passes, the relevant SSO ASC images were checked for the visible presence of cloud
- in all cases, it was found that at least some cloud was present in the ASC images
 - at least cirrus, sometimes very thin (it is known that such cloud may not be picked up by passive IR cloud sensors)
 - sometimes there is a clear patch overhead (or near overhead) at the time of the MODIS pass, but with cloud otherwise present (this should show up in the *sso_cloudiness* parameter, or in the MODIS maps)
 - on nights with very low clear-sky values of sky_ambient, cloud can be present even when the sky temp is at values that are taken to indicate clear skies

465 2018/10/14 | T = -35.5° C | sso_cloudiness = 0.86 (*mostly clear night*) | MODIS 10km_cmask = 0.25 (*lots of cloud*)

489 2018/10/26 | T = -42.3° C | sso_cloudiness = 1.00 (*clear night*) | MODIS 10km_cmask = 0.69 (*significant cloud*)

THE UNIVERSITY

520 2018/11/12 | T = -36.2° C | sso_cloudiness = 0.92 (mostly clear night) | MODIS 10km_cmask = 0.12 (very cloudy)

- the night of pass 489 (which was at 20181025 15:30 UT) had very low sky temps, down to ~ -47° C
- at the time of the two ASC images below (10 minutes after pass 489), the sky temps were around -37.9° C, well below the nominal clear-sky limit
 - but there was significant cloud present

- so it would seem that (at least for SSO- perhaps there are local variations?) the sky temperature values should be taken with a dose of caution when it comes to assigning clear-sky status
- perhaps the usual statement that "sky temperatures below x °C indicate clear skies" might be reworded as
 - "...in general, it is found that clear skies will have sky temperatures below x °C, but this does not preclude the possibility of some cloud being present for such temperatures"

Summary

- There is a generally good agreement between satellite-based MODIS cloud characterisation and ground-based cloud characterisation based on passive IR cloud monitoring (sky temperatures)
- extrapolating from one or two MODIS passes on a night, to a classification of the entire night based just on those limited measurements, is not unreasonable- but, of course, not perfect...
- nights of very low *clear-sky* sky temperatures can show periods of significant cloud which still yield associated sky temperatures below the nominal clear-sky limiting temperature
 - such a limiting temperature is not a 100% guarantee of clear skies below that sky temperature
- conclude that cloudiness characterisation based on MODIS-only data is a useful approach when no ground-based data are available, or as another mode of charcterisation when such data are available