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Brief outline

➔ Cosmic rays, what are they, where do they come from?
➔ CRs →γ-rays
➔ CR calorimetry in star-forming galaxies
➔ Minimal set of model inputs
➔ γ-ray spectra of local galaxies
➔ CANDELS
➔ DIGB
➔ Outlook: other non-thermal emission from SFGs



  

Cosmic Rays (CRs)

CRs accelerated in SNR shocks by means of DSA

Star formation

Supernovae

Diffusive shock acceleration in SNRs
1st order Fermi

dNCR
dE

∝E−2

relativistic cosmic ray

Non-relativistic, high-E particle

multiple reflections across shocks → E↑

E ~ 1051 erg

η ~ 0.1 → 1050 erg in CR ions + O(1049 erg) in CR e-



  

CR propagation + model
injection spectra ~ E-q with q ~ 2.1 – 2.5

B fields: CRs couple to ionised component of ISM, ionised ISM coupled collisionally to neutrals

Excite streaming instability → ‘self-confinement’

→ damping by ion-neutral collisions vs. growth rate of the streaming instability (K+P1969)

→streaming limited diffusion + field-line random walk MK2020+ 
→macroscopic diffusion coefficient
→this yields a calorimetry fraction→ f
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CR energy losses
Loss processes for CR protons:

Two fates:
→ diffusive escape into IGM (safe! τ

loss
> 1/H

0
)

→ CR energy loss in inelastic hadronic collision
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Applying this to galaxies

100 102 104

E [GeV]

10 11

10 10

10 9

10 8

E2
[G

eV
cm

2
s

1 ]

ARP 220

NGC 253

a
Local starbursts Fermi

HESS
VERITAS

100 102 104

E [GeV]

M 31

NGC 4945

b
Local quiescent



  

CANDELS
Take the above model and apply to a deep field survey

NASA, ESA, G. Illingworth, R. Bouwens, and the HUDF09 Team.

Require as minimum:
● z
● half light radius R

e

● M
*

● SFR

+ inverse KS, σ
g
-SFR relation

Derive scale height h, ISM density n
H
,

CR density, etc.

Obtain f
cal

(E
CR

)

Calculate spectrum for each galaxy, account for EBL and galactic opacity, sum contributions

ΦE(Eγ)=∑
i=1

ns (1+ z)2

4 π d L
2 f i(Eγ(1+ z))e−τ EBL(Eγ , z) e−τ γ γ(Eγ(1+ z))

+ convolve with cosmic SFH (low z!)



  

The DIGB

Current wisdom:
 
→AGNs (Blazars in the main) dominate resolved EGB
→SFGs – luminosity function + FIR-ɣ relation + spectral shape

 → substantial uncertainties

However:

→ New results (more SFG ɣ-ray detections) hint at slightly brighter galaxies (Kornecki et 
al. 2020).
→ clustering statistics and cross-correlation somewhat favour SFG-like emitters over AGN 
→ Really require a physical model for ɣ-ray emission in SFGs – i.e. a bottom-up approach



  

The DIGB

Key inputs: 
● SN mechanical energy converted into CR ‘p’s - η = 0.1
● Injection index 2.2
● Mass of stars formed per SN → SN rate
● M

A
 = 2

Model applied to CANDELS GOODS-S field

characteristic rise
for hadronic emission



  

The DIGB



  

CRe loss mechanism
Essentially a long talk in itself: Very (very!) brief overview

Inject 2% of SN energy - Balancing of loss mechanisms!
Ionisation
→ what it is says on 
the box

Bremsstrahlung
→ emits a photon when deflected 
by Coulomb field of ISM particle
→some γ-rays  

Highly energy dependent – approximately:

Inverse Compton
→ upscatter low energy photons
→ sensitive to interstellar radiation 
field (CMB, FIR, etc.) (prop. u

rad
)

→can dominate γ-ray emission

Synchrotron
→ radial acceleration by B-field 
→ prop. u

B

→radio continuum emission

Low E (sub GeV) → ionisation
Intermediate E (~GeV+) → diffusion, BS, IC, sync
High E (~TeV) → IC, sync
UHE → sync only (IC suppressed due to Klein Nishina)

Use this to model non-thermal spectra in a two-zone model (disk+halo) by solving for the 
steady state CR spectra using the full description.



  

Some results
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Sometimes things work a bit too well...



  

Conclusions
● SFGs dominate the diffuse isotropic gamma-ray background

● Taking standard parameters (no fine-tuning) → could explain most of the emission
● Model yields reasonable spectra for nearby gamma-ray observed SFGs
➔ FIR-γ correlation consistent with observation
➔ Source count distribution consistent with observation
● Details in https://arxiv.org/abs/2109.07598

● Model extension can yield results for other non-thermal emission. Current research on 
explaining FIR-radio correlation. Paper in prep…

● CTA:
● Extend the population of observed SFGs and other sources → constraints on model 

inputs
● New measurement of the diffuse isotropic background

● Neutrinos! Currently recover ~15% of astrophysical neutrino flux with current diffusion 
model. Believe this doesn’t quite apply at UHE….

https://arxiv.org/abs/2109.07598
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