The isotropic diffuse y-ray background and associated non-thermal emission

> Matt Roth Australian National University

CTA-Oz Meeting #2 2021

22 November 2021

NASA/DOE/Fermi LAT Collaboration - 9 years of Fermi data

Brief outline

- → Cosmic rays, what are they, where do they come from?
- → CRs \rightarrow γ-rays
- CR calorimetry in star-forming galaxies
- Minimal set of model inputs
- γ-ray spectra of local galaxies
- CANDELS
- → DIGB
- → Outlook: other non-thermal emission from SFGs

Cosmic Rays (CRs)

Star formation

 $\eta \sim 0.1 \ {}_{\rightarrow} \ 10^{50} \ erg$ in CR ions + O(10^{49} \ erg) in CR e^{-}

CRs accelerated in SNR shocks by means of DSA

CR propagation + model

injection spectra ~ E^{-q} with q ~ 2.1 – 2.5

B fields: CRs couple to ionised component of ISM, ionised ISM coupled collisionally to neutrals

Excite streaming instability \rightarrow 'self-confinement'

 \rightarrow damping by ion-neutral collisions vs. growth rate of the streaming instability (K+P1969)

$$\Gamma_d = \frac{v_{in}}{2} \qquad \Gamma_g = \frac{e B}{mc} \frac{n_{CR}(>\gamma)}{n_i} \left(\frac{V_{st}}{V_{Ai}} - 1\right)$$

→ streaming limited diffusion + field-line random walk MK2020+ • half light radius R \rightarrow macroscopic diffusion coefficient \rightarrow this yields a calorimetry fraction $\rightarrow f_{cal}(E_{CP})$

Model Require as minimum:

- z (distance)
- - M.
 - SFR
 - + inverse KS, σ_{α} -SFR relation
 - Derive scale height h, ISM density n CR density, etc.

Obtain $f_{eal}(E_{CR})$

CR energy losses

Loss processes for CR protons:

Two fates:

- \rightarrow diffusive escape into IGM (safe! $\tau_{loss} > 1/H_0$)
- \rightarrow CR energy loss in inelastic hadronic collision

$$\pi^{0} \rightarrow 2 \gamma$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \mu^{+} \rightarrow e^{+} + \nu_{e} + \overline{\nu}_{\mu}$$

$$\pi^{-} \rightarrow \mu^{-} + \overline{\nu}_{\mu} \qquad \mu^{-} \rightarrow e^{-} + \overline{\nu}_{e} + \nu_{\mu}$$

$$v_{st} \approx min(V_{Ai}(1 + \frac{\gamma_d \chi M_A c \rho^{3/2}}{4 \pi^{1/2} C e u_{LA} \mu_i \gamma^{-p+1}}), c)$$

Applying this to galaxies

CANDELS

Take the above model and apply to a deep field survey

NASA, ESA, G. Illingworth, R. Bouwens, and the HUDF09 Team.

Require as minimum:

Z

- half light radius R_e
- M.
- SFR
- + inverse KS, σ_g -SFR relation
- Derive scale height h, ISM density n_H, CR density, etc.
- \rightarrow Obtain f_{cal}(E_{CR})

Calculate spectrum for each galaxy, account for EBL and galactic opacity, sum contributions

$$\Phi_{E}(E_{y}) = \sum_{i=1}^{n_{s}} \frac{(1+z)^{2}}{4 \pi d_{L}^{2}} f_{i}(E_{y}(1+z)) e^{-\tau_{EBL}(E_{y},z)} e^{-\tau_{yy}(E_{y}(1+z))}$$

+ convolve with cosmic SFH (low z!)

The DIGB

Current wisdom:

 \rightarrow AGNs (Blazars in the main) dominate resolved EGB \rightarrow SFGs – luminosity function + FIR- γ relation + spectral shape

→ substantial uncertainties

However:

 \rightarrow New results (more SFG γ -ray detections) hint at slightly brighter galaxies (Kornecki et al. 2020).

 \rightarrow clustering statistics and cross-correlation somewhat favour SFG-like emitters over AGN \rightarrow Really require a physical model for γ -ray emission in SFGs – i.e. a bottom-up approach

The DIGB

Model applied to CANDELS GOODS-S field

Key inputs:

- SN mechanical energy converted into CR 'p's $\eta = 0.1$
- Injection index 2.2
- Mass of stars formed per SN \rightarrow SN rate
- M_A = 2

The DIGB

CRe loss mechanism

Essentially a long talk in itself: Very (very!) brief overview

Inject 2% of SN energy - Balancing of loss mechanisms!

Inverse Compton \rightarrow upscatter low energy photons \rightarrow sensitive to interstellar radiation field (CMB, FIR, etc.) (prop. u_{rad}) \rightarrow can dominate γ -ray emission

Synchrotron

- \rightarrow radial acceleration by B-field
- \rightarrow prop. u_{B}
- \rightarrow radio continuum emission

Highly energy dependent – approximately:

Low E (sub GeV) \rightarrow ionisation Intermediate E (~GeV+) \rightarrow diffusion, BS, IC, sync High E (~TeV) \rightarrow IC, sync UHE \rightarrow sync only (IC suppressed due to Klein Nishina)

Use this to model non-thermal spectra in a two-zone model (disk+halo) by solving for the steady state CR spectra using the full description.

$$\frac{\partial N_{\rm e}\left(E,t\right)}{\partial t} - D\nabla^2 N_{\rm e}\left(E,t\right) + \frac{\partial}{\partial E} \left(\dot{E}N_{\rm e}\left(E,t\right)\right) + N_{\rm e}\left(E,t\right) \int_{m_{\rm e}c^2}^{E} P\left(E,k\right) \, dk$$
$$- \int_{E}^{\infty} N_{\rm e}\left(k,t\right) P\left(k,E\right) \, dk - \sum_{i} Q_{\rm i}\left(E,t\right) = 0$$

Some results

Sometimes things work a bit too well...

Conclusions

- SFGs dominate the diffuse isotropic gamma-ray background
 - Taking standard parameters (no fine-tuning) \rightarrow could explain most of the emission
 - Model yields reasonable spectra for nearby gamma-ray observed SFGs
 - FIR-y correlation consistent with observation
 - Source count distribution consistent with observation
 - Details in https://arxiv.org/abs/2109.07598
- Model extension can yield results for other non-thermal emission. Current research on explaining FIR-radio correlation. Paper in prep...
- CTA:
 - Extend the population of observed SFGs and other sources \rightarrow constraints on model inputs
 - New measurement of the diffuse isotropic background
- Neutrinos! Currently recover ~15% of astrophysical neutrino flux with current diffusion model. Believe this doesn't quite apply at UHE....