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Brief outline

> Cosmic rays, what are they, where do they come from?
> CRs - y-rays

> CR calorimetry in star-forming galaxies

> Minimal set of model inputs

> y-ray spectra of local galaxies

> CANDELS

> DIGB

> Qutlook: other non-thermal emission from SFGs



Cosmic Rays (CRs)

Star formation
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CR propagation + model

Injection spectra ~ E9withq ~2.1 -2.5

B fields: CRs couple to ionised component of ISM, ionised ISM coupled collisionally to neutrals

Excite streaming instability — ‘self-confinement’

— damping by ion-neutral collisions vs. growth rate of the streaming instability (K+P1969)
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CR energy losses

Loss processes for CR protons:

Two fates:
— diffusive escape into IGM (safe! 1 > 1/H)

— CR energy loss in inelastic hadronic collision
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Applying this to galaxies

Local starbursts —— Fermi Local quiescent
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CANDELS

Take the above model and apply to a deep field survey

Hubble Ultra Deep Field .
HSTWFC3IR "+ 4, % ' .
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NASA, ESA, G. lllingworth, R. Bouwens, and the HUDF09 Team.

Calculate spectrum for each galaxy, account for EBL and galactic opacity, sum contributions
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The DIGB

Current wisdom:

—AGNs (Blazars in the main) dominate resolved EGB
- SFGs — luminosity function + FIR-y relation + spectral shape

— substantial uncertainties

However:

— New results (more SFG y-ray detections) hint at slightly brighter galaxies (Kornecki et

al. 2020).
- clustering statistics and cross-correlation somewhat favour SFG-like emitters over AGN

— Really require a physical model for y-ray emission in SFGs — i.e. a bottom-up approach



The DIGB

Model applied to CANDELS GOODS-S field

¥ Fermi 50 months DIGB
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Key inputs:

* SN mechanical energy converted into CR ‘p's-n =0.1
* Injection index 2.2

* Mass of stars formed per SN - SN rate
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The DIGB
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CRe loss mechanism

Essentially a long talk in itself: Very (very!) brief overview

Inject 2% of SN energy - Balancing of loss mechanisms!
lonisation Bremsstrahlung

Inverse Compton Synchrotron
-~ what it is says on — emits a photon when deflected - upscatter low energy photons - radial acceleration by B-field
the box by Coulomb field of ISM particle - sensitive to interstellar radiation - prop. u,
—some y-rays

field (CMB, FIR, etc.) (prop. u_)
— can dominate y-ray emission

Highly energy dependent — approximately:

Low E (sub GeV) - ionisation

Intermediate E (~GeV+) - diffusion, BS, IC, sync
High E (~TeV) - IC, sync

UHE - sync only (IC suppressed due to Klein Nishina)

- radio continuum emission

Use this to model non-thermal spectra in a two-zone model (disk+halo) by solving for the
steady state CR spectra using the full description.
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Some results
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+ radio/y-ray data (NED, Ajello+2020) — = inyerse Compton primary e~

bremsstrahlung primary e~ - fsynchrotron secondary e*
bremsstrahlung secondary e*

Sometimes things work a bit too well...

109(S1.49 gHz/[W Hz™1])

{

Bell 2003
Brown+ 2017
data

log(3:e%) = 1.148 £ 0.001 log(¥2) +9.964 + 0.013

8 10 12
log(Lrr/[Lo])

— diffusion
fonisation

—— inverse Compton
bremsstrahlung

—— synchrotron




Conclusions

SFGs dominate the diffuse isotropic gamma-ray background
* Taking standard parameters (no fine-tuning) — could explain most of the emission
* Model yields reasonable spectra for nearby gamma-ray observed SFGs
> FIR-y correlation consistent with observation
> Source count distribution consistent with observation
* Details in
Model extension can yield results for other non-thermal emission. Current research on
explaining FIR-radio correlation. Paper in prep...
CTA:
* Extend the population of observed SFGs and other sources - constraints on model
iInputs
* New measurement of the diffuse isotropic background
Neutrinos! Currently recover ~15% of astrophysical neutrino flux with current diffusion
model. Believe this doesn’t quite apply at UHE....


https://arxiv.org/abs/2109.07598
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