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outline

WIMPs as gamma ray sources
projected CTA sensitivity for generic WIMPs
Bayesian backbone of our toolchain
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WIMPs weakly interacting massive particles

many beyond the standard model theories predict WIMP-like particles

WIMP-like particles are still perfect dark matter candidates
our GAMBIT studies repeatedly prove this

most WIMP-like particles are their own antiparticles
they self-annihilate into energetic standard particles

energetic charged particles copiously produce gamma rays
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the DM WG published sensitivity of CTA for a generic WIMP

WIMP annihilating into W+ W ~; region above solid curve is observable by CTA
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our goal is to generalize these limits for specific DM models
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CTAANalysis

we attempted to use the already existing code CTAAnalysis

PHS3350 Final Report: Sensitivity of the Cherenekov Telescope
Array for dark matter from the galactic centre under the Scalar
Singlet Model

Liam Pinchbeck
Superisor: Csaba Balazs

November 2021

Abstract

The Cherenkov Telescope Array will be a leap forward in searches for dark matter. The question
is then whether it will be sensitive enough to eliminate a significant number of dark matter models
currently proposed. In this investigation we modified the pipeline ctaAnalysis to develop cross-sections
for dark matter under the generic WIMP models for single channel self-annihilation from the galactic
centre. In part trying to replicate the results of Acharyya et al (2021). We also start the initial
investigation to medifications to the pipeline to include non-trivial branching factors in the calculations
for dark matter. Our findings suggest that by doing so, we can create more accurate estimations of
annihilation cross-sections for different dark matter masses and thus estimations on the sensitivity of
the Cherenkov telescope array in future investigations.

1 Introduction

One of the major questions plaguing physicists today is the mystery of what is dark matter (DM)? This
is not for a lack of possible explanations such as Axion particle candidates, super symmetric candidates
such as Snentrinos and many more [2J. The main issue is the inability to eliminate these models. Under
most models DM is, almost by definition, hard to detect due to it only weakly interacting with standard
model particles of which we would use to detect DM [3 {.

Another problem with these searches is that candidate particles can typically go to extreme ends of the
mass scale. For example under some models for the Axion candidates it is predicted that these particles
could be less than 10~%V 5] (10" times smaller than an electron. leadine some to postulate the DM is
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Sensitivity of The Cherenkov Telescope Array to Dark Matter

Kieran Rule
Supervised by Csaba Balasz

Abstract

Pre-construction estimates of the Cherenkov Telescope
Array’s sensitivity to dark matter in the galactic centre in-
dicate that it will be sensitive to dark matter with velocity
weighted cross section below the thermal relic cross section
for dark matter masses between approximately 102 and 10°
GeV, with a 2a confidence interval [1]. In this investiga-
tion, we attempted to replicate these dark matter sensitivity
estimates using the Cherenkov Telescope Array data anal-
ysis pipeline ctaAnalysis. We found that ctaAnalysis was
able to produce similar dark matter annihilation fluxes teo
that of Acharyya et al. However, none of our sensitivity
results for three dark matter annihilation models were in
agreement with the estimates of Acharyya et al. We suggest
this was due to ctaAnalysis' poor background estimation,
particularly for galuctic centre surveys. Furthermore, we
suggest improvements that future works could implement
on Cherenkov Telescope Array dark matter sensitivity es-
timates to increase accuracy, as well as improvements in
ctaAnalysis to increase utility.

1. Introduction

Many observations indicate that dark matter has been a
dominant driver of change throughout the universe, yet little
is known about it [2]. The following introduce some moti-
vations for the existence of dark matter, as well as an intro-

dnotinn tn thanretical randidatec and darl matter detection

Figure 1. The points show data measuring the average velocity
curve of a spiral galaxy, with the solid line being the line of best
fit. The dotted line shows the extent due to the disc and the dashed
line shows the extent due to the halo. The horizontal axis shows
the radius as a fraction of the optical radius [2].

disk. These sum to the dashed line, which is the line of best
fit for the data points shown. According to general relativ-
ity, the rotation curve should drop off with approximately
7~ 2 when the radius is greater than the optical radius, since
for sufficiently low speeds we have that,
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Figure 1. The points show data measuring the average velocity
curve of a spiral galaxy, with the solid line being the line of best
fit. The dotted line shows the extent due to the disc and the dashed
line shows the extent due to the halo. The horizontal axis shows
the radius as a fraction of the optical radius [2].
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likelihood of an event

CTA data: measured sky location and energy of each gamma ray events

d'={Q! B}

m

each event is characterized by a likelihood function

L(d|Q, EY) = L(E! |EY) L(Q1, Q0 EL)
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likelihood of an event

L(d|Q, EY) = L(E! |EY) L(Q1, Q0 EL)

the likelihood is a “point spread function”:

it relates the measured sky location and energy (subscript m) to the
true sky location and energy (no subscripts)
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posteriors

for each event we calculate two posteriors, one given the signal
hypothesis

£(di]S) = / a0y / AET (| E) (2, E'|S)
and one given the background hypothesis

£(di|B) = / i0, / AE; £(d;| BN (QF, B |B)
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likelihoods
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sky location priors for signal and background hypotheses
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priors
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likelihood functions for energy and sky location
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likelihood of full dataset
the likelihood of the complete dataset is
H)\ﬁ iS) + (1 — N L(d;|B)

A is the probability that an event is drawn from the signal population

equivalently, A is the proportion of events drawn from the signal
hypothesis
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number of signal events

the number of signal events is proportional to the gamma ray flux

AP
NS—T/deE(E D) A(E)dEdS

which is proportional to the annihilation cross section

dd |
deE( 771/}) 471' /l.osdl( (2m2 ZBf )
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Bayesian posterior for annihilation cross
section

using Bayes theorem, we can invert the likelihood

H)\ﬁ 1S) 4+ (1 — N L(d;|B)

to obtain a probability distribution for the annihilation cross section
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Bayesian posterior for annihilation cross
section
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sample detection (left) and exclusion (right) at 99% C.L.
shaded region indicating credible interval (vertical line at true value)
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orelim limits for annihilation cross section

1024
. -- DM thermal relic cross-section =~ —— bb - 525 hr
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CTA will be a powerful tool to hunt for WIMPs.

It will be able to discover or rule out various WIMP candidates.

We’re working on a generic numerical framework to determine the
sensitivity of CTA for various WIMP models.

Interesting results are coming soon!
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